Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.

题目:

最大子数组和

思路:

1、暴力枚举

起点:i=0,...,n-1;终点:j=i,....,n-1;依次求[i,j]区间的和,时间复杂度O(n^3)

2、优化枚举

起点:i=0,...,n-1;终点:j=i,....,n-1;累计求[i,j]区间的和,时间复杂度O(n^2)

3、分治算法

分:两个等长的子数组,分别求解,复杂度O(nlogn)

合:求包含中间点的最大子数组之和,复杂度O(n)

时间复杂度:O(nlogn)

4、动态规划

假设dp[i]表示以a[i]结尾的最大子数组和,那么

状态转移方程:

dp[i]=max(dp[i-1]+a[i],a[i])

  • 包含a[0,i-1]:dp[i-1]+a[i]
  • 不包含a[0,i-1]:a[i]

初始值:

dp[0]=a[0]

复杂度:

时间复杂度:O(n),空间复杂度:O(n)

空间优化:

dp[i]只与dp[i-1]有关,因此状态转移方程优化为:

best=max(best+a[i],a[i])

其实这里的动态规划实现的是一种简单的逻辑,即前面的数组和大于0,则加上,小于或等于0,则放弃。

if(cur>0)
  cur+=A[i];
else
  cur=A[i];

5、前缀数组和

定义:sum[i]=a[0]+a[1]+...+a[i]

sum(A[i....j])=sum[j]-sum[i-1]

对于数组A,以A[i]结尾的最大子数组和为sum[i]-min(sum(k)),k=0...i-1,因此需保存每一步计算中的最小sum值。

依次计算以A[i]结尾的最大子数组和,然后保留其最大值即可,详见代码。

代码:

只实现分治、动态规划以及前缀和三种思路

1、分治

class Solution {
public:
int maxSubArray(int A[], int n) {
if(n==1)
return A[0]; int mid=n/2;
int left=maxSubArray(A,mid);
int right=maxSubArray(A+mid,n-mid);
int ans=max(left,right); int cur=A[mid-1];
int tmp=cur;
for(int i=mid-2;i>=0;i--){
cur+=A[i];
if(cur>tmp)
tmp=cur;
}
cur=tmp;
for(int i=mid;i<n;i++){
cur+=A[i];
if(cur>tmp)
tmp=cur;
} return max(ans,tmp); }
};

2、动态规划

class Solution {
public:
int maxSubArray(int A[], int n) {
int cur=A[0];
int max=A[0];
for(int i=1;i<n;i++){
if(cur>0)
cur+=A[i];
else
cur=A[i];
if(cur>max)
max=cur;
}
return max;
}
};
class Solution {
public:
int maxSubArray(int A[], int n) {
int endhere=A[0];
int ans=A[0]; for(int i=1;i<n;i++){
endhere=max(endhere+A[i],A[i]);
ans=max(ans,endhere);
} return ans;
}
};

3、前缀数组和

class Solution {
public:
int maxSubArray(int A[], int n) {
int sum=A[0];
int minSum=min(0,sum);
int ans=A[0]; for(int i=1;i<n;i++){
sum+=A[i];
ans=max(ans,sum-minSum);
minSum=min(minSum,sum);
} return ans;
}
};

  

(LeetCode 53)Maximum Subarray的更多相关文章

  1. leetcode || 53、Maximum Subarray

    problem: Find the contiguous subarray within an array (containing at least one number) which has the ...

  2. LeetCode(53) Maximum Subarray

    题目 Find the contiguous subarray within an array (containing at least one number) which has the large ...

  3. (Problem 53)Combinatoric selections

    There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 2 ...

  4. 【算法】LeetCode算法题-Maximum Subarray

    这是悦乐书的第154次更新,第156篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第13题(顺位题号是53).给定一个整数数组nums,找出一个最大和,此和是由数组中索引 ...

  5. (LeetCode 78)SubSets

    Given a set of distinct integers, S, return all possible subsets. Note: Elements in a subset must be ...

  6. (LeetCode 72)Edit Distance

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  7. 《从零开始学Swift》学习笔记(Day 53)——do-try-catch错误处理模式

    原创文章,欢迎转载.转载请注明:关东升的博客 Swift 1.x的错误处理模式存在很多弊端,例如:为了在编程时候省事,给error参数传递一个nil,或者方法调用完成后不去判断error是否为nil, ...

  8. 【LeetCode】053. Maximum Subarray

    题目: Find the contiguous subarray within an array (containing at least one number) which has the larg ...

  9. LeetCode OJ:Maximum Subarray(子数组最大值)

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

随机推荐

  1. python虚拟环境virtualenv下安装MySQL-python

    1.先在windows安装:https://github.com/konglingxi/mysqldb_for_python27 2.按照提示将python主环境中的mysqldb相关文件及文件夹移到 ...

  2. FastReport.Net使用:[30]对话框使用

    使用对话框需要知道的地方  1.按钮的DialogResult属性. 假如DialogResult属性值为OK的按钮被点击,报表将会展现后面的对话框或者报表页:如果属性值为None,则停留在当前窗体: ...

  3. Linux安装apache服务

    1.通过yum包下载安装httpd yum -y install httpd*(等待安装) 到下面就安装完毕 2.启动apache服务 service httpd restart 3.现在就可以查看a ...

  4. BZOJ1038 瞭望塔

    学习了半平交面. 我这里写的是训练指南中的双端队列,每次判断是否删去更优然后更新. 看hzwer中有一处不太明白就是为何要将两段加入队列 后来对拍出错才知道是因为精度,当两线重合时他们叉积返回值是一个 ...

  5. BZOJ1007 水平相交直线

    按照斜率排序,我们可以想象如果你能看到大于等于三条直线那么他一定会组成一个下凸包,这样我们只需要判断如果当前这条直线与栈顶第二直线相交点相比于栈顶第二直线与栈顶直线相交点靠左那么他就不满足凸包性质. ...

  6. web.xml2.3配置需要注意的顺序问题

    今天在做一个街道办事处项目时,用了eWebeditor编辑器,在按照说明文件进行web.xml配置时,在<web-app>一行上出现红叉,提示信息为:The content of elem ...

  7. Educational Codeforces Round 10 C. Foe Pairs 水题

    C. Foe Pairs 题目连接: http://www.codeforces.com/contest/652/problem/C Description You are given a permu ...

  8. MySQL遇到的一个卡库问题及对update的学习

    近日遇到个卡库的问题,环境是MySQL5.5.12,报错信息如下 ) and was aborted. There is a chan ce that your master is inconsist ...

  9. LT1946A-- Transformerless dc/dc converter produces bipolar outputs

    Dual-polarity supply provides ±12V from one IC VC (Pin 1): Error Amplifier Output Pin. Tie external ...

  10. 管理站点IP策略

    修改站点IP策略的代码 using System; using System.Text; using Microsoft.Web.Administration; internal static cla ...