Kruskal-Wallis test
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share
项目联系QQ:231469242
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/08_TestsMeanValues/kruskalWallis
# -*- coding: utf-8 -*-
import numpy as np
# additional packages
from scipy.stats.mstats import kruskalwallis
'''
.. currentmodule:: scipy.stats.mstats
This module contains a large number of statistical functions that can
be used with masked arrays.
Most of these functions are similar to those in scipy.stats but might
have small differences in the API or in the algorithm used. Since this
is a relatively new package, some API changes are still possible.
'''
# Get the data
'''
#These data could be a comparison of the smog levels in four different cities.
city1 = np.array([68, 93, 123, 83, 108, 122])
city2 = np.array([119, 116, 101, 103, 113, 84])
city3 = np.array([70, 68, 54, 73, 81, 68])
city4 = np.array([61, 54, 59, 67, 59, 70])
''' group1=[27,2,4,18,7,9]
group2=[20,8,14,36,21,22]
group3=[34,31,3,23,30,6]
list_groups=[group1,group2,group3] def Kruskawallis_test(list_groups):
# Perform the Kruskal-Wallis test,返回True表示有显著差异,返回False表示无显著差异
print"Use kruskawallis test:"
h, p = kruskalwallis(list_groups)
print"H value:",h
print"p",p # Print the results
if p<0.05:
print('There is a significant difference between the cities.')
return True
else:
print('No significant difference between the cities.')
return False Kruskawallis_test(list_groups)

当样本数据非正态分布,两组数对比时用mann-whitney检验,三组或更多时用kruskal-wallis检验

kruskal-wallis 是一个独立单因素方差检验的版本
kruskal-wallis能用于排序计算

样本数据

流程

H0和H1假设

自由度:组数-1,这里有三组,自由度为3-=2

自由度为2,a=0.05,对应得关键值5.99,如果计算的值大于5.99,拒绝原假设


对数据排序,然后把对应得排序填入表内

计算公式:
T为一组的排序之和
n为一组的个数

计算的H值2.854小于5.99,不拒绝原假设

python信用评分卡建模(附代码,博主录制)

Kruskal-Wallis test的更多相关文章
- R in action读书笔记(7)-第七章:基本统计分析(下)
7.3相关 相关系数可以用来描述定量变量之间的关系.相关系数的符号(±)表明关系的方向(正相关或负相关),其值的大小表示关系的强弱程度(完全不相关时为0,完全相关时为1).除了基础安装以外,我们还将使 ...
- R语言-组间差异的非参数检验
R语言-组间差异的非参数检验 7.5 组间差异的非参数检验 如果数据无法满足t检验或ANOVA的参数假设,可以转而使用非参数方法.举例来说,若结果变量在本质上就严重偏倚或呈现有序关系,那么你可能会希望 ...
- PP: Time series clustering via community detection in Networks
Improvement can be done in fulture:1. the algorithm of constructing network from distance matrix. 2. ...
- 吴裕雄--天生自然 R语言开发学习:基本统计分析(续三)
#---------------------------------------------------------------------# # R in Action (2nd ed): Chap ...
- 吴裕雄--天生自然 R语言开发学习:基本统计分析
#---------------------------------------------------------------------# # R in Action (2nd ed): Chap ...
- 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用
图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...
- 最小生成树---Prim算法和Kruskal算法
Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...
- 最小生成树(prim&kruskal)
最近都是图,为了防止几次记不住,先把自己理解的写下来,有问题继续改.先把算法过程记下来: prime算法: 原始的加权连通图——————D被选作起点,选与之相连的权值 ...
- Kruskal 最小生成树算法
对于一个给定的连通的无向图 G = (V, E),希望找到一个无回路的子集 T,T 是 E 的子集,它连接了所有的顶点,且其权值之和为最小. 因为 T 无回路且连接所有的顶点,所以它必然是一棵树,称为 ...
- 权重最小生成树的思想与Kruskal算法
晚上做携程的笔试题,附加题考到了权重最小生成树.OMG,就在开考之前,我还又看过一遍这内容,可因为时间太紧,也从来没有写过代码,就GG了.又吃了眼高手低的亏.这不,就好好总结一下,亡羊补牢. 权重最小 ...
随机推荐
- 启动tomcat时 一闪而过解决方法(2)
下面我先跟大家确认一下问题出现的前提条件(本机版本java:1.6.20,tomcat:6.0.32) 1)在eclipse里面启动tomcat时都是正常的. 2)在系统中配置了各种环境变量如下: J ...
- [笔记] postgresql 流复制(streaming replication)
基本环境说明: os:FreeBSD 9.3 postgresql version: master:192.168.56.101 standby:192.168.56.102 安装过程略,基于pkg包 ...
- 实验一 MiniOS
实验一.命令解释程序的编写实验 商软1班 杨晶晶 201406114102 一. 实验目的 (1)掌握命令解释程序的原理: (2)掌握简单的DOS调用方法: (3)掌握C语言编程初 ...
- 王者荣耀交流协会final发布中间产物
WBS+PSP 版本控制报告 软件功能说明书final修订
- linux awk,sort,uniq,wc,cut命令详解
1.awk awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息 $ 表示当前行 $ 表示第一列 NF 表示一共有多少列 $NF 表示最 ...
- 路由器DMZ功能
环境描述 172.17* 校园网 实验室路由器接入校园网,通过nat分化出网段 192.168.. 实验过程 主机A(windows)接入路由器(192.168.1.110),主机B(Ubuntu)接 ...
- JSON:JavaScript 对象表示法
JSON:JavaScript 对象表示法(JavaScript Object Notation). JSON 是存储和交换文本信息的语法.类似 XML. JSON 比 XML 更小.更快,更易解析. ...
- elasticsearch6 学习之基础CURD
环境:elasticsearch6.1.2 kibana6.1.2 基础概念: 1._index元数据 (1)代表一个document存放在哪个index中(2)类似的数据放在一个索引 ...
- Java 中 Vector、ArrayList、List 使用深入剖析
线性表,链表,哈希表是常用的数据结构,在进行Java开发时,JDK已经为我们提供了一系列相应的类来实现基本的数据结构.这些类均在java.util包中.本文试图通过简单的描述,向读者阐述各个类的作用以 ...
- MySQL专题 1 分布式部署数据库同步问题 BinLog
什么是 Binlog MySQL Server 有四种类型的日志——Error Log.General Query Log.Binary Log 和 Slow Query Log. 第一个是错误日志, ...
