《Interest Rate Risk Modeling》阅读笔记——第九章:关键利率久期和 VaR 分析
第九章:关键利率久期和 VaR 分析

思维导图

一些想法
- 在解关键方程的时候施加 \(L^1\) 约束也许可以得到“稀疏解”,进而减少交易成本。
- 借鉴样条插值拟合期限结构时选择 knot 的方法选择关键期限。
有关现金流映射技术的推导
已知,
\[
\Delta y(t) =
\begin{cases}
\Delta y(t_{first}) & t \le t_{first}\\
\Delta y(t_{last}) & t \ge t_{last}\\
\alpha \Delta y(t_{left}) + (1-\alpha) \Delta y(t_{right})& \text{ else}
\end{cases}
\]
\[
\alpha = \frac{t_{right}-t}{t_{right} - t_{left}}
\]
\[
t_{left} < t < t_{right}
\]
求解 \(CF_{left}\)、\(CF_{right}\) 和 \(CF_0\) 使得:
\[
\begin{aligned}
P &= \frac{CF_t}{e^{y(t)t}} \\
&= \frac{CF_{left}}{e^{y(t_{left})t_{left}}} + \frac{CF_{right}}{e^{y(t_{right})t_{right}}} + CF_0
\end{aligned} \tag{1}
\]
要求关键利率久期不变,那么:
\[
\begin{aligned}
\frac{1}{P} \frac{\partial P}{\partial y(t_{left})}
&=\frac{1}{P} \frac{\partial P}{\partial y(t)} \frac{\partial y(t)}{\partial y(t_{left})}\\
&\approx\frac{1}{P} \frac{\partial P}{\partial y(t)} \frac{\Delta y(t)}{\Delta y(t_{left})}\\
&\approx-\frac{1}{P} \frac{CF_t\times t}{e^{y(t)t}} \alpha\\
&=-t\alpha \\
\frac{1}{P} \frac{\partial P}{\partial y(t_{left})}
&=\frac{1}{P} \frac{\partial \left(\frac{CF_{left}}{e^{y(t_{left})t_{left}}} + \frac{CF_{right}}{e^{y(t_{right})t_{right}}} + CF_0 \right) }{\partial y(t_{left})}\\
&=-\frac{1}{P} \frac{CF_{left}\times t_{left}}{e^{y(t_{left})t_{left}}}
\end{aligned}
\]
解出
\[
CF_{left} = \frac{t \alpha P e^{y(t_{left})t_{left}}}{t_{left}} \tag{2}
\]
同理解出
\[
CF_{right} = \frac{t (1-\alpha) P e^{y(t_{right})t_{right}}}{t_{right}} \tag{3}
\]
(2)和(3)代入(1)解出
\[
CF_0 = P \times \frac{(t-t_{left})(t-t_{right})}{t_{left} \times t_{right}}
\]
《Interest Rate Risk Modeling》阅读笔记——第九章:关键利率久期和 VaR 分析的更多相关文章
- 《Interest Rate Risk Modeling》阅读笔记——第五章:久期向量模型
目录 第五章:久期向量模型 思维导图 久期向量的推导 久期向量 广义久期向量 一些想法 第五章:久期向量模型 思维导图 久期向量的推导 \[ V_0 = \sum_{t=t_1}^{t_n} CF_t ...
- 《Interest Rate Risk Modeling》阅读笔记——第二章:债券价格、久期与凸性
目录 第二章:债券价格.久期与凸性 思维导图 瞬时回报率-收益率的例子 第二章:债券价格.久期与凸性 思维导图 瞬时回报率-收益率的例子
- 《Interest Rate Risk Modeling》阅读笔记——第一章:利率风险建模概览
目录 第一章:利率风险建模概览 思维导图 一些想法 第一章:利率风险建模概览 思维导图 一些想法 久期向量模型类似于研究组合收益的高阶矩. 久期向量模型用的是一般多项式表达高阶久期,试试正交多项式? ...
- 《Interest Rate Risk Modeling》阅读笔记——第四章:M-absolute 和 M-square 风险度量
目录 第四章:M-absolute 和 M-square 风险度量 思维导图 两个重要不等式的推导 关于 \(M^A\) 的不等式 关于 \(M^2\) 的不等式 凸性效应(CE)和风险效应(RE)的 ...
- 《Interest Rate Risk Modeling》阅读笔记——第三章:拟合期限结构
目录 第三章:拟合期限结构 思维导图 扩展 第三章:拟合期限结构 思维导图 扩展 NS 模型的变种
- 《Interest Rate Risk Modeling》阅读笔记——第八章:基于 LIBOR 模型用互换和利率期权进行对冲
目录 第八章:基于 LIBOR 模型用互换和利率期权进行对冲 思维导图 推导浮息债在重置日(reset date)的价格 第八章:基于 LIBOR 模型用互换和利率期权进行对冲 思维导图 推导浮息债在 ...
- 《Interest Rate Risk Modeling》阅读笔记——第十章 主成分模型与 VaR 分析
目录 第十章:主成分模型与 VaR 分析 思维导图 一些想法 推导 PCD.PCC 和 KRD.KRC 的关系 PCD 和 KRD PCC 和 KRC 第十章:主成分模型与 VaR 分析 思维导图 一 ...
- Android群英传笔记——第九章:Android系统信息和安全机制
Android群英传笔记--第九章:Android系统信息和安全机制 本书也正式的进入尾声了,在android的世界了,不同的软件,硬件信息就像一个国家的经济水平,军事水平,不同的配置参数,代表着一个 ...
- o'Reill的SVG精髓(第二版)学习笔记——第九章
第九章:文本 9.1 字符:在XML文档中,字符是指带有一个数字值的一个或多个字节,数字只与Unicode标准对应. 符号:符号(glyph)是指字符的视觉呈现.每个字符都可以用很多不同的符号来呈现. ...
随机推荐
- 大组合数Lucas
https://blog.csdn.net/sr_19930829/article/details/39058487 LL Lucas(LL n, LL m, int p){ ; } Saving B ...
- 技术学习的网站 http://www.runoob.com/
菜鸟教程:http://www.runoob.com/ W3C:https://www.w3cschool.cn/tutorial 脚本之家:https://www.jb51.net/
- java中LinkedList源码分析
ArrayList是动态数组,其实本质就是对数组的操作.那么LinkedList实现原理和ArrayList是完全不一样的.现在就来分析一下ArrayList和LinkeList的优劣吧LinkedL ...
- C语言:将字符串中的前导*号全部移到字符串的尾部。
//规定输入的字符串中只包含字母和*号,fun函数:将字符串中的前导*号全部移到字符串的尾部. #include <stdio.h> void fun( char *a ) { ]; ch ...
- ASP.NET Core搭建多层网站架构【2-公共基础库】
2020/01/28, ASP.NET Core 3.1, VS2019,Newtonsoft.Json 12.0.3, Microsoft.AspNetCore.Cryptography.KeyDe ...
- php学习之始于html——div布局与css控制
关于您的问题:xampp是一个集成的php开发环境,里面包含Apache,mysql等环境,主要充当一个服务器的角色, 其中有文件,数据,路径等,一个网站程序安装之后,都会有一个根目录,根目录下,有其 ...
- Linux 目录结构与目录操作
目录结构 Linux的文件系统是采用级层式的树状目录结构,在此结构中的最上层是根目录"/",然后再次目录下再创建其他目录 在Linux系统中,一切皆文件 常见目录作用 / : 所有 ...
- numpy中的max()函数
1.ndarray.max([int axis]) 函数功能:求ndarray中指定维度的最大值,默认求所有值的最大值. axis=0:求各column的最大值 axis=1:求各row的最大值
- 《实战Java高并发程序设计》读书笔记二
第二章 Java并行程序基础 1.线程的基本操作 线程:进程是线程的容器,线程是轻量级进程,是程序执行的最小单位,使用多线程而不用多进程去进行并发程序设计是因为线程间的切换和调度的成本远远的小于进程 ...
- lc 0224
目录 ✅ 766. 托普利茨矩阵 描述 解答 cpp py ✅ 566. 重塑矩阵 描述 解答 java py ✅ 637. 二叉树的层平均值 描述 解答 cpp py java 0224 algo ...