Unique Attack

Time Limit: 5 Seconds      Memory Limit: 32768 KB

N supercomputers in the United States of Antarctica are connected into a network. A network has a simple topology: M different pairs of supercomputers are connected to each other by an optical fibre. All connections are two-way, that is, they can be used in both directions. Data can be transmitted from one computer to another either directly by a fibre, or using some intermediate computers.

A group of terrorists is planning to attack the network. Their goal is to separate two main computers of the network, so that there is no way to transmit data from one of them to another. For each fibre the terrorists have calculated the sum of money they need to destroy the fibre. Of course, they want to minimize the cost of the operation, so it is required that the total sum spent for destroying the fibres was minimal possible.

Now the leaders of the group wonder whether there is only one way to do the selected operation. That is, they want to know if there are no two different sets of fibre connections that can be destroyed, such that the main supercomputers cannot connect to each other after it and the cost of the operation is minimal possible.

Input

The input file consists of several cases. In each case, the first line of the input file contains N, M, A and B (2 <= N <= 800, 1 <= M <= 10000, 1 <= A,B <= N, A != B), specifying the number of supercomputers in the network, the number of fibre connections, and the numbers of the main supercomputers respectively. A case with 4 zeros indicates the end of file.

Next M lines describe fibre connections. For each connection the numbers of the computers it connects are given and the cost of destroying this connection. It is guaranteed that all costs are non-negative integer numbers not exceeding 105, no two computers are directly connected by more than one fibre, no fibre connects a computer to itself and initially there is the way to transmit data from one main supercomputer to another.

Output

If there is only one way to perform the operation, output "UNIQUE" in a single line. In the other case output "AMBIGUOUS".

Sample Input

4 4 1 2
1 2 1
2 4 2
1 3 2
3 4 1
4 4 1 2
1 2 1
2 4 1
1 3 2
3 4 1
0 0 0 0

Sample Output

UNIQUE
AMBIGUOUS
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
int head[N],tot,S,T;
int q[N],dis[N],n,m;
bool vis[N];
struct node
{
int next,v,w;
} e[N*];
void add(int u,int v,int w)
{
e[tot].v=v;
e[tot].w=w;
e[tot].next=head[u];
head[u]=tot++;
}
bool bfs()
{
memset(dis,-,sizeof(dis));
dis[S]=;
int l=,r=;
q[r++]=S;
while(l<r)
{
int u=q[l++];
for(int i=head[u]; ~i; i=e[i].next)
{
int v=e[i].v;
if(dis[v]==-&&e[i].w>)
{
q[r++]=v;
dis[v]=dis[u]+;
if(v==T) return true;
}
}
}
return false;
}
int dfs(int s,int low)
{
if(s==T||!low) return low;
int ans=low,a;
for(int i=head[s]; ~i; i=e[i].next)
{
if(e[i].w>&&dis[e[i].v]==dis[s]+&&(a=dfs(e[i].v,min(e[i].w,ans))))
{
e[i].w-=a;
e[i^].w+=a;
ans-=a;
if(!ans) return low;
}
}
if(low==ans) dis[s]=-;
return low-ans;
}
void dfs(int &cnt,int u,int k){
for(int i=head[u];~i;i=e[i].next){
int v=e[i].v;
if(!vis[v]&&e[i^k].w) {
vis[v]=;
++cnt;
dfs(cnt,v,k);
}
}
}
int main(){
int x,y,z;
while(scanf("%d%d%d%d",&n,&m,&S,&T)!=EOF){
if(n+m+S+T==) break;
memset(head,-,sizeof(head));
tot=;
while(m--){
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
while(bfs()) dfs(S,);
int cnt1=,cnt2=;
memset(vis,,sizeof(vis));
dfs(cnt1,S,);
memset(vis,,sizeof(vis));
dfs(cnt2,T,);
if(cnt1>) --cnt1;
if(cnt2>) --cnt2;
printf("%s\n",cnt1+cnt2==n?"UNIQUE":"AMBIGUOUS");
}
}

判断割是否唯一zoj2587的更多相关文章

  1. ZOJ - 2587 Unique Attack (判断最小割是否唯一)

    题意:判断最小割是否唯一. 分析:跑出最大流后,在残余网上从源点和汇点分别dfs一次,对访问的点都打上标记. 若还有点没有被访问到,说明最小割不唯一. https://www.cnblogs.com/ ...

  2. POJ 1094 Sorting It All Out (拓扑排序,判断序列是否唯一,图是否有环)

    题意:给出n个字符,m对关系,让你输出三种情况:     1.若到第k行时,能判断出唯一的拓扑序列,则输出:         Sorted sequence determined after k re ...

  3. poj 1679 判断MST是不是唯一的 (次小生成树)

    判断MST是不是唯一的 如果是唯一的 就输出最小的权值和 如果不是唯一的 就输出Not Unique! 次小生成树就是第二小生成树  如果次小生成树的权值和MST相等  那么MST就不是唯一的 法一: ...

  4. POJ 1679 The Unique MST(判断最小生成树是否唯一)

    题目链接: http://poj.org/problem?id=1679 Description Given a connected undirected graph, tell if its min ...

  5. poj1679(判断最小生成树是否唯一)

    题意:给出n个点,m条边,要你判断最小生成树是否唯一. 思路:先做一次最小生成树操作,标记选择了的边,然后枚举已经被标记了的边,判断剩下的边组成的最小生成树是否与前面的相等,相等,则不唯一,否则唯一. ...

  6. POJ 1679 The Unique MST (次小生成树 判断最小生成树是否唯一)

    题目链接 Description Given a connected undirected graph, tell if its minimum spanning tree is unique. De ...

  7. POJ-1679 The Unique MST(次小生成树、判断最小生成树是否唯一)

    http://poj.org/problem?id=1679 Description Given a connected undirected graph, tell if its minimum s ...

  8. PAT-1119(Pre- and Post-order Traversals)+前序和后序遍历确定二叉树+判断二叉树是否唯一

    Pre- and Post-order Traversals PAT-1119 这题难度较大,主要需要考虑如何实现根据前序遍历和后序遍历来确定一颗二叉树 一篇好的文章: 题解 import java. ...

  9. POJ 1679 The Unique MST 【判断最小生成树是否唯一】

    Description Given a connected undirected graph, tell if its minimum spanning tree is unique.  Defini ...

随机推荐

  1. Libra教程之:Transaction的生命周期

    文章目录 Transaction的生命周期 提交一个Transaction 交易入链的详细过程 接收Transaction 和其他Validators共享这个Transaction 区块Proposi ...

  2. 徐州赛区网络预赛 D Easy Math

    比赛快结束的适合看了一下D题,发现跟前几天刚刚做过的HDU 5728 PowMod几乎一模一样,当时特兴奋,结果一直到比赛结束都一直WA.回来仔细一琢磨才发现,PowMod这道题保证了n不含平方因子, ...

  3. QQ网站的源代码

    链接:https://pan.baidu.com/s/1mqetTbauKTI0KJOaU8wW5A 提取码请加QQ:2669803073获取 声明:仅供学习,切勿用于其他用途

  4. Nest.js 6.0.0 正式版发布,基于 TypeScript 的 Node.js 框架

    开发四年只会写业务代码,分布式高并发都不会还做程序员?   Nest.js 6.0.0 正式版发布了.Nest 是构建高效.可扩展的 Node.js Web 应用程序的框架.它使用现代的 JavaSc ...

  5. Vue Router路由守卫妙用:异步获取数据成功后再进行路由跳转并传递数据,失败则不进行跳转

    问题引入 试想这样一个业务场景: 在用户输入数据,点击提交按钮后,这时发起了ajax请求,如果请求成功, 则跳转到详情页面并展示详情数据,失败则不跳转到详情页面,只是在当前页面给出错误消息. 难点所在 ...

  6. 接口自动化测试平台-接入持续集成jenkins

    开篇提到,自动化测试最终期望还是能接入持续集成系统jenkins,下面记录下Go接口自动化测试平台是如何设计接入jenkins的. 回到Go接口自动化测试平台,在web系统中触发测试任务执行的入口为: ...

  7. Spring Developer Tools 源码分析:三、重启自动配置'

    接上文 Spring Developer Tools 源码分析:二.类路径监控,接下来看看前面提到的这些类是如何配置,如何启动的. spring-boot-devtools 使用了 Spring Bo ...

  8. nat和静态映射

    拓扑图: 实验要求: 1.R2.R3能访问外网的4.4.4.4(4.4.4.4为R4上的环回接口,用来模拟inter网). 2.R4访问222.222.222.100其实访问到的是内网的192.168 ...

  9. 理解卷积神经网络中的channel

    在一般的深度学习框架的 conv2d 中,如 tensorflow.mxnet,channel 都是必填的一个参数 在 tensorflow 中,对于输入样本中 channels 的含义,一般是RGB ...

  10. Docker 结合Jenkins 构建持续集成环境

    Docker 结合Jenkins  构建持续集成环境 Jenkins : 一个开源的持续集成工具, 提供软件版本发布.自动测试等一系列流程及丰富的插件 Maven: 一个自动化构建工具, 通过一段描述 ...