Unique Attack

Time Limit: 5 Seconds      Memory Limit: 32768 KB

N supercomputers in the United States of Antarctica are connected into a network. A network has a simple topology: M different pairs of supercomputers are connected to each other by an optical fibre. All connections are two-way, that is, they can be used in both directions. Data can be transmitted from one computer to another either directly by a fibre, or using some intermediate computers.

A group of terrorists is planning to attack the network. Their goal is to separate two main computers of the network, so that there is no way to transmit data from one of them to another. For each fibre the terrorists have calculated the sum of money they need to destroy the fibre. Of course, they want to minimize the cost of the operation, so it is required that the total sum spent for destroying the fibres was minimal possible.

Now the leaders of the group wonder whether there is only one way to do the selected operation. That is, they want to know if there are no two different sets of fibre connections that can be destroyed, such that the main supercomputers cannot connect to each other after it and the cost of the operation is minimal possible.

Input

The input file consists of several cases. In each case, the first line of the input file contains N, M, A and B (2 <= N <= 800, 1 <= M <= 10000, 1 <= A,B <= N, A != B), specifying the number of supercomputers in the network, the number of fibre connections, and the numbers of the main supercomputers respectively. A case with 4 zeros indicates the end of file.

Next M lines describe fibre connections. For each connection the numbers of the computers it connects are given and the cost of destroying this connection. It is guaranteed that all costs are non-negative integer numbers not exceeding 105, no two computers are directly connected by more than one fibre, no fibre connects a computer to itself and initially there is the way to transmit data from one main supercomputer to another.

Output

If there is only one way to perform the operation, output "UNIQUE" in a single line. In the other case output "AMBIGUOUS".

Sample Input

4 4 1 2
1 2 1
2 4 2
1 3 2
3 4 1
4 4 1 2
1 2 1
2 4 1
1 3 2
3 4 1
0 0 0 0

Sample Output

UNIQUE
AMBIGUOUS
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
int head[N],tot,S,T;
int q[N],dis[N],n,m;
bool vis[N];
struct node
{
int next,v,w;
} e[N*];
void add(int u,int v,int w)
{
e[tot].v=v;
e[tot].w=w;
e[tot].next=head[u];
head[u]=tot++;
}
bool bfs()
{
memset(dis,-,sizeof(dis));
dis[S]=;
int l=,r=;
q[r++]=S;
while(l<r)
{
int u=q[l++];
for(int i=head[u]; ~i; i=e[i].next)
{
int v=e[i].v;
if(dis[v]==-&&e[i].w>)
{
q[r++]=v;
dis[v]=dis[u]+;
if(v==T) return true;
}
}
}
return false;
}
int dfs(int s,int low)
{
if(s==T||!low) return low;
int ans=low,a;
for(int i=head[s]; ~i; i=e[i].next)
{
if(e[i].w>&&dis[e[i].v]==dis[s]+&&(a=dfs(e[i].v,min(e[i].w,ans))))
{
e[i].w-=a;
e[i^].w+=a;
ans-=a;
if(!ans) return low;
}
}
if(low==ans) dis[s]=-;
return low-ans;
}
void dfs(int &cnt,int u,int k){
for(int i=head[u];~i;i=e[i].next){
int v=e[i].v;
if(!vis[v]&&e[i^k].w) {
vis[v]=;
++cnt;
dfs(cnt,v,k);
}
}
}
int main(){
int x,y,z;
while(scanf("%d%d%d%d",&n,&m,&S,&T)!=EOF){
if(n+m+S+T==) break;
memset(head,-,sizeof(head));
tot=;
while(m--){
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
while(bfs()) dfs(S,);
int cnt1=,cnt2=;
memset(vis,,sizeof(vis));
dfs(cnt1,S,);
memset(vis,,sizeof(vis));
dfs(cnt2,T,);
if(cnt1>) --cnt1;
if(cnt2>) --cnt2;
printf("%s\n",cnt1+cnt2==n?"UNIQUE":"AMBIGUOUS");
}
}

判断割是否唯一zoj2587的更多相关文章

  1. ZOJ - 2587 Unique Attack (判断最小割是否唯一)

    题意:判断最小割是否唯一. 分析:跑出最大流后,在残余网上从源点和汇点分别dfs一次,对访问的点都打上标记. 若还有点没有被访问到,说明最小割不唯一. https://www.cnblogs.com/ ...

  2. POJ 1094 Sorting It All Out (拓扑排序,判断序列是否唯一,图是否有环)

    题意:给出n个字符,m对关系,让你输出三种情况:     1.若到第k行时,能判断出唯一的拓扑序列,则输出:         Sorted sequence determined after k re ...

  3. poj 1679 判断MST是不是唯一的 (次小生成树)

    判断MST是不是唯一的 如果是唯一的 就输出最小的权值和 如果不是唯一的 就输出Not Unique! 次小生成树就是第二小生成树  如果次小生成树的权值和MST相等  那么MST就不是唯一的 法一: ...

  4. POJ 1679 The Unique MST(判断最小生成树是否唯一)

    题目链接: http://poj.org/problem?id=1679 Description Given a connected undirected graph, tell if its min ...

  5. poj1679(判断最小生成树是否唯一)

    题意:给出n个点,m条边,要你判断最小生成树是否唯一. 思路:先做一次最小生成树操作,标记选择了的边,然后枚举已经被标记了的边,判断剩下的边组成的最小生成树是否与前面的相等,相等,则不唯一,否则唯一. ...

  6. POJ 1679 The Unique MST (次小生成树 判断最小生成树是否唯一)

    题目链接 Description Given a connected undirected graph, tell if its minimum spanning tree is unique. De ...

  7. POJ-1679 The Unique MST(次小生成树、判断最小生成树是否唯一)

    http://poj.org/problem?id=1679 Description Given a connected undirected graph, tell if its minimum s ...

  8. PAT-1119(Pre- and Post-order Traversals)+前序和后序遍历确定二叉树+判断二叉树是否唯一

    Pre- and Post-order Traversals PAT-1119 这题难度较大,主要需要考虑如何实现根据前序遍历和后序遍历来确定一颗二叉树 一篇好的文章: 题解 import java. ...

  9. POJ 1679 The Unique MST 【判断最小生成树是否唯一】

    Description Given a connected undirected graph, tell if its minimum spanning tree is unique.  Defini ...

随机推荐

  1. java 8 Streams简介

    目录 简介 Functional Interface Function:一个参数一个返回值 BiFunction:接收两个参数,一个返回值 Supplier:无参的Function Consumer: ...

  2. Kubernetes 持久化存储是个难题,解决方案有哪些?\n

    像Kubernetes 这样的容器编排工具正在彻底改变应用程序的开发和部署方式.随着微服务架构的兴起,以及基础架构与应用程序逻辑从开发人员的角度解耦,开发人员越来越关注构建软件和交付价值. Kuber ...

  3. 以内存级速度实现存储?XPoint正是我们的计划

    随着计算能力虚拟化技术的普及,存储机制在速度上远逊于内存这一劣势开始变得愈发凸显. 这一巨大的访问速度鸿沟一直是各项存储技术想要解决的核心难题:纸带.磁带.磁盘驱动器乃至闪存记忆体等等,而如今最新一代 ...

  4. Java 线程池(ThreadPoolExecutor)原理分析与实际运用

    在我们的开发中"池"的概念并不罕见,有数据库连接池.线程池.对象池.常量池等等.下面我们主要针对线程池来一步一步揭开线程池的面纱. 有关java线程技术文章还可以推荐阅读:< ...

  5. Ubuntu上安装配置Java环境

    参考文献:在Ubuntu 14.04中安装JDK 方法一: @ 安装 1. 添加PPA repository系统 PPA repository介绍 $sudo add-apt-repository p ...

  6. 图论--最短路--SPFA

    SPFA算法(shortest path faster algorithm)算法是西南交通大学段凡丁于1994年发表的,它在Bellman-ford算法的基础上进行了改进,使其在能够处理待负权图的单元 ...

  7. 纯django开发最完美博客

    2020年5月打造最时尚博客系统教程 为了学习速度,集中精力学习django和博客开发, 没有使用其它框架,也没有使用css预处理等 这样学起来最方便, 博客前后端都完成, www.duanshuil ...

  8. zabbix tigger 设置

    设置一个内存在10分钟内持续低于某值才告警: 设置方法: 修改模板的tigger   configuration - > Template OS linux Active(选择自己的模板)-&g ...

  9. 抓住CoAP协议的“心”

    摘要 The Constrained Application Protocol(CoAP)是一种专用的Web传输协议,用于受约束的节点和受约束的(例如,低功率,有损)网络. 节点通常具有带少量ROM和 ...

  10. Asp.Net Core MVC在View中,根据用户权限动态生成菜单

    1. 用户登录时,将用户的权限写入Cookie: //将需要的信息写入claims后 var identity = new ClaimsIdentity(claims, IdentityConstan ...