思路:

1.按照题意求最小割 转换成最大流用Dinic解

2. 转换成对偶图 求最短路

Dinic:

//By SiriusRen
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 1100000
int n,m,first[N],next[N*6],v[N*6],w[N*6],tot,jy,ans,vis[N],S,T,xx,pos[N];
void Add(int x,int y,int z){w[tot]=z,v[tot]=y,next[tot]=first[x],first[x]=tot++;}
void add(int x,int y,int z){Add(x,y,z),Add(y,x,z);}
bool tell(){
memset(vis,-1,sizeof(vis)),vis[S]=0;
queue<int>q;q.push(S);
while(!q.empty()){
int t=q.front();q.pop();
for(int i=first[t];~i;i=next[i])
if(w[i]&&vis[v[i]]==-1)
vis[v[i]]=vis[t]+1,q.push(v[i]);
}return vis[T]!=-1;
}
int zeng(int x,int y){
if(x==T)return y;
int r=0;
for(int i=first[x];~i&&y>r;i=next[i])
if(w[i]&&vis[v[i]]==vis[x]+1){
int t=zeng(v[i],min(y-r,w[i]));
w[i]-=t,w[i^1]+=t,r+=t;
}
if(!r)vis[x]=-1;
return r;
}
int main(){
memset(first,-1,sizeof(first));
scanf("%d%d",&n,&m);
S=m+1,T=n*m+m;
for(int i=1;i<=n;i++)for(int j=1;j<m;j++)
scanf("%d",&xx),add(i*m+j,i*m+j+1,xx);
for(int i=1;i<n;i++)for(int j=1;j<=m;j++)
scanf("%d",&xx),add(i*m+j,(i+1)*m+j,xx);
for(int i=1;i<n;i++)for(int j=1;j<m;j++)
scanf("%d",&xx),add(i*m+j,(i+1)*m+j+1,xx);
while(tell())while(jy=zeng(S,0x3fffffff))ans+=jy;
printf("%d\n",ans);
}

Dijkstra:



这么转成对偶图

在原平面图中添加一条从起点S到终点T的边,会增加一个区域S’。

无限大的区域设为T’。

把加边后的平面图按照上面的方法转化为对偶图。

删去边S’-T’。

此时S-T的最小割大小等于S’到T’的最短路长度。

Ps:需要特判n=1|m=1的情况

//By SiriusRen
#include <queue>
#include <cstdio>
#include <cstring>
using namespace std;
#define M 1111*1111*6
int n,m,a[1005][1005],b[1005][1005],c[1005][1005],T=2000*1005;
int first[M/3],next[M],v[M],w[M],tot,vis[M/3],d[M/3];
void Add(int x,int y,int z){w[tot]=z,v[tot]=y,next[tot]=first[x],first[x]=tot++;}
struct Node{int now,weight;}jy;
bool operator < (Node a,Node b){return a.weight>b.weight;}
void Dijkstra(){
priority_queue<Node>pq;pq.push(jy);
while(!pq.empty()){
Node t=pq.top();pq.pop();
if(vis[t.now])continue;
for(int i=first[t.now];~i;i=next[i])if(d[v[i]]>d[t.now]+w[i])
d[v[i]]=d[t.now]+w[i],jy.now=v[i],jy.weight=d[v[i]],pq.push(jy);
}printf("%d\n",d[T]=0x3f3f3f3f?d[T]:0);
}
void add(int x,int y,int z){Add(x,y,z),Add(y,x,z);}
int main(){
memset(first,-1,sizeof(first)),memset(d,0x3f,sizeof(d)),d[0]=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)for(int j=1;j<m;j++)scanf("%d",&a[i][j]);
for(int i=1;i<n;i++)for(int j=1;j<=m;j++)scanf("%d",&b[i][j]);
for(int i=1;i<n;i++)for(int j=1;j<m;j++)scanf("%d",&c[i][j]);
if(n==1||m==1){
if(m==1)for(int i=1;i<n;i++)d[T]=min(d[T],b[i][1]);
if(n==1)for(int i=1;i<m;i++)d[T]=min(d[T],a[1][i]);
}
for(int i=1;i<n;i++)for(int j=1;j<m;j++){
int cnt=((i-1)*(m-1)+j)*2;
add(cnt-1,cnt,c[i][j]);
if(j!=m-1)add(cnt-1,cnt+2,b[i][j+1]);
if(i!=n-1)add(cnt,cnt+(m-1)*2-1,a[i+1][j]);
}
for(int i=1;i<n;i++)add(((i-1)*(m-1)+1)*2,T,b[i][1]),add(0,2*i*(m-1)-1,b[i][m]);
for(int i=1;i<m;i++)add(0,2*i-1,a[1][i]),add(2*((n-2)*(m-1)+i),T,a[n][i]);
Dijkstra();
}



效率竟然差不多?

BZOJ 1001 平面图与对偶图的转化 最短路Or最大流的更多相关文章

  1. bzoj 1001 平面图转对偶图 最短路求图最小割

    原题传送门http://www.lydsy.com/JudgeOnline/problem.php?id=1001 整理了下之前A的题 平面图可以转化成对偶图,然后(NlogN)的可以求出图的最小割( ...

  2. BZOJ 1001 平面图转对偶图

    原图的面转成点,原图的边依旧边,只是连接的是两个面. 对偶图的点数=原图的面数 对偶图的边数=原图的边数(如果原边只属于一个面,则它为环边) #include<bits/stdc++.h> ...

  3. bzoj 1001 狼抓兔子 —— 平面图最小割(最短路)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1001 平面图最小割可以转化成最短路问题: 建图时看清楚题目的 input ... 代码如下: ...

  4. [jzoj 6092] [GDOI2019模拟2019.3.30] 附耳而至 解题报告 (平面图转对偶图+最小割)

    题目链接: https://jzoj.net/senior/#main/show/6092 题目: 知识点--平面图转对偶图 在求最小割的时候,我们可以把平面图转为对偶图,用最短路来求最小割,这样会比 ...

  5. BZOJ 1001 狼抓兔子 (网络流最小割/平面图的对偶图的最短路)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 算法讨论: 1.可以用最大流做,最大流等于最小割. 2.可以把这个图转化其对偶图,然 ...

  6. BZOJ 1001 [BeiJing2006] 狼抓兔子(平面图最大流)

    题目大意 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的.而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...

  7. s - t 平面图最大流 (附例题 bzoj 1001)

    以下均移自 周冬的<两极相通-浅析最大最小定理在信息学竞赛中的应用> 平面图性质 1.(欧拉公式)如果一个连通的平面图有n个点,m条边和f个面,那么f=m-n+2 2.每个平面图G都有一个 ...

  8. 【BZOJ 1001】狼抓兔子 对偶图+SPFA

    这道题是求图的最小割,也就是用最大流.但因为边太多,最大流算法会T,因此不能用最大流算法. 因为这是个平面图,所以求平面图的最小割可以使用特殊的技巧就是求对偶图然后求对偶图的最短路.把每个面看成一个点 ...

  9. 【BZOJ 2007】 2007: [Noi2010]海拔 (平面图转对偶图+spfa)

    2007: [Noi2010]海拔 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2504  Solved: 1195 Description YT市 ...

随机推荐

  1. poj2492--A Bug&#39;s Life(并查集变形)

    A Bug's Life Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 28703   Accepted: 9350 De ...

  2. linux数据库升级

    转自:老左博客:http://www.laozuo.org/6145.html 老左今天有在帮朋友的博客搬迁到另外一台VPS主机环境,其环境采用的是LLSMP架构的,原先的服务器采用的是LNMP网站环 ...

  3. 跨域调用接口——WebClient通过get和post请求api

    AJAX不可以实现跨域请求,经过特殊处理才行.一般后台可以通过WebClient实现跨域请求~ //get 请求        string url = string.Format("htt ...

  4. HTML&CSS——网站注册页面

    1.表单标签 所有需要提交到服务器端的表单项必须使用<form></form>括起来! form 标签属性:  action,整个表单提交的位置(可以是一个页面,也可以是一个后 ...

  5. 优化长的switch语句

    突然想到之前碰到的一个优化的面试题,现在想想switch用的太傻 public enum FormatType { GetKey, GetValue } public class Format { p ...

  6. 正则效验url

    上篇文章讲到多主题的解决方案:简单暴力的TP5多主题方案 为了简化配置,所以将域名前的协议 http/https 截取了. 后台配置时就需要效验配置的格式是否正确,需要用到的正则代码如下: /*** ...

  7. dedecms简略标题(副标题)使用方法教程

    在常见的CMS系统中,我对dedecms算是比较熟悉的,自己网站用的也是这个系统.系统功能强大使用灵活,相信这也是它受到大多数中小站长青睐的原因. 再好的系统也有照顾不周的地方,很多站长也会有自己个性 ...

  8. 【BZOJ4005】[JLOI2015]骗我呢

    题意: Alice和Bob在经过了数学的洗礼之后,不再喜欢玩对抗游戏了,他们喜欢玩合作游戏.现在他们有一个n×m的网格,Alice和Bob要在一定规则下往网 格里填数字,Alice和Bob都是聪明绝顶 ...

  9. 拓展Lucas小结

    拓展Lucas是解决大组合数取模非质数(尤其是含平方因子的合数)问题的有力工具... 首先对模数质因数分解,把每个质因子单独拎出来处理答案,然后用中国剩余定理(excrt)合并 问题转化为,对于每个质 ...

  10. 【BZOJ 1588】 [HNOI2002]营业额统计

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 每天的最小波动值指的是和之前所有天的差值的绝对值中的最小值. 用set.的lower_bound函数. 每次找和他差值最小的数字就好 ...