BZOJ 1001 平面图与对偶图的转化 最短路Or最大流
思路:
1.按照题意求最小割 转换成最大流用Dinic解
2. 转换成对偶图 求最短路
Dinic:
//By SiriusRen
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 1100000
int n,m,first[N],next[N*6],v[N*6],w[N*6],tot,jy,ans,vis[N],S,T,xx,pos[N];
void Add(int x,int y,int z){w[tot]=z,v[tot]=y,next[tot]=first[x],first[x]=tot++;}
void add(int x,int y,int z){Add(x,y,z),Add(y,x,z);}
bool tell(){
memset(vis,-1,sizeof(vis)),vis[S]=0;
queue<int>q;q.push(S);
while(!q.empty()){
int t=q.front();q.pop();
for(int i=first[t];~i;i=next[i])
if(w[i]&&vis[v[i]]==-1)
vis[v[i]]=vis[t]+1,q.push(v[i]);
}return vis[T]!=-1;
}
int zeng(int x,int y){
if(x==T)return y;
int r=0;
for(int i=first[x];~i&&y>r;i=next[i])
if(w[i]&&vis[v[i]]==vis[x]+1){
int t=zeng(v[i],min(y-r,w[i]));
w[i]-=t,w[i^1]+=t,r+=t;
}
if(!r)vis[x]=-1;
return r;
}
int main(){
memset(first,-1,sizeof(first));
scanf("%d%d",&n,&m);
S=m+1,T=n*m+m;
for(int i=1;i<=n;i++)for(int j=1;j<m;j++)
scanf("%d",&xx),add(i*m+j,i*m+j+1,xx);
for(int i=1;i<n;i++)for(int j=1;j<=m;j++)
scanf("%d",&xx),add(i*m+j,(i+1)*m+j,xx);
for(int i=1;i<n;i++)for(int j=1;j<m;j++)
scanf("%d",&xx),add(i*m+j,(i+1)*m+j+1,xx);
while(tell())while(jy=zeng(S,0x3fffffff))ans+=jy;
printf("%d\n",ans);
}
Dijkstra:
这么转成对偶图
在原平面图中添加一条从起点S到终点T的边,会增加一个区域S’。
无限大的区域设为T’。
把加边后的平面图按照上面的方法转化为对偶图。
删去边S’-T’。
此时S-T的最小割大小等于S’到T’的最短路长度。
Ps:需要特判n=1|m=1的情况
//By SiriusRen
#include <queue>
#include <cstdio>
#include <cstring>
using namespace std;
#define M 1111*1111*6
int n,m,a[1005][1005],b[1005][1005],c[1005][1005],T=2000*1005;
int first[M/3],next[M],v[M],w[M],tot,vis[M/3],d[M/3];
void Add(int x,int y,int z){w[tot]=z,v[tot]=y,next[tot]=first[x],first[x]=tot++;}
struct Node{int now,weight;}jy;
bool operator < (Node a,Node b){return a.weight>b.weight;}
void Dijkstra(){
priority_queue<Node>pq;pq.push(jy);
while(!pq.empty()){
Node t=pq.top();pq.pop();
if(vis[t.now])continue;
for(int i=first[t.now];~i;i=next[i])if(d[v[i]]>d[t.now]+w[i])
d[v[i]]=d[t.now]+w[i],jy.now=v[i],jy.weight=d[v[i]],pq.push(jy);
}printf("%d\n",d[T]=0x3f3f3f3f?d[T]:0);
}
void add(int x,int y,int z){Add(x,y,z),Add(y,x,z);}
int main(){
memset(first,-1,sizeof(first)),memset(d,0x3f,sizeof(d)),d[0]=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)for(int j=1;j<m;j++)scanf("%d",&a[i][j]);
for(int i=1;i<n;i++)for(int j=1;j<=m;j++)scanf("%d",&b[i][j]);
for(int i=1;i<n;i++)for(int j=1;j<m;j++)scanf("%d",&c[i][j]);
if(n==1||m==1){
if(m==1)for(int i=1;i<n;i++)d[T]=min(d[T],b[i][1]);
if(n==1)for(int i=1;i<m;i++)d[T]=min(d[T],a[1][i]);
}
for(int i=1;i<n;i++)for(int j=1;j<m;j++){
int cnt=((i-1)*(m-1)+j)*2;
add(cnt-1,cnt,c[i][j]);
if(j!=m-1)add(cnt-1,cnt+2,b[i][j+1]);
if(i!=n-1)add(cnt,cnt+(m-1)*2-1,a[i+1][j]);
}
for(int i=1;i<n;i++)add(((i-1)*(m-1)+1)*2,T,b[i][1]),add(0,2*i*(m-1)-1,b[i][m]);
for(int i=1;i<m;i++)add(0,2*i-1,a[1][i]),add(2*((n-2)*(m-1)+i),T,a[n][i]);
Dijkstra();
}
效率竟然差不多?
BZOJ 1001 平面图与对偶图的转化 最短路Or最大流的更多相关文章
- bzoj 1001 平面图转对偶图 最短路求图最小割
原题传送门http://www.lydsy.com/JudgeOnline/problem.php?id=1001 整理了下之前A的题 平面图可以转化成对偶图,然后(NlogN)的可以求出图的最小割( ...
- BZOJ 1001 平面图转对偶图
原图的面转成点,原图的边依旧边,只是连接的是两个面. 对偶图的点数=原图的面数 对偶图的边数=原图的边数(如果原边只属于一个面,则它为环边) #include<bits/stdc++.h> ...
- bzoj 1001 狼抓兔子 —— 平面图最小割(最短路)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1001 平面图最小割可以转化成最短路问题: 建图时看清楚题目的 input ... 代码如下: ...
- [jzoj 6092] [GDOI2019模拟2019.3.30] 附耳而至 解题报告 (平面图转对偶图+最小割)
题目链接: https://jzoj.net/senior/#main/show/6092 题目: 知识点--平面图转对偶图 在求最小割的时候,我们可以把平面图转为对偶图,用最短路来求最小割,这样会比 ...
- BZOJ 1001 狼抓兔子 (网络流最小割/平面图的对偶图的最短路)
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 算法讨论: 1.可以用最大流做,最大流等于最小割. 2.可以把这个图转化其对偶图,然 ...
- BZOJ 1001 [BeiJing2006] 狼抓兔子(平面图最大流)
题目大意 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的.而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...
- s - t 平面图最大流 (附例题 bzoj 1001)
以下均移自 周冬的<两极相通-浅析最大最小定理在信息学竞赛中的应用> 平面图性质 1.(欧拉公式)如果一个连通的平面图有n个点,m条边和f个面,那么f=m-n+2 2.每个平面图G都有一个 ...
- 【BZOJ 1001】狼抓兔子 对偶图+SPFA
这道题是求图的最小割,也就是用最大流.但因为边太多,最大流算法会T,因此不能用最大流算法. 因为这是个平面图,所以求平面图的最小割可以使用特殊的技巧就是求对偶图然后求对偶图的最短路.把每个面看成一个点 ...
- 【BZOJ 2007】 2007: [Noi2010]海拔 (平面图转对偶图+spfa)
2007: [Noi2010]海拔 Time Limit: 20 Sec Memory Limit: 552 MBSubmit: 2504 Solved: 1195 Description YT市 ...
随机推荐
- CF 567C(Geometric Progression-map)
C. Geometric Progression time limit per test 1 second memory limit per test 256 megabytes input stan ...
- python写个简单的文件上传是有多难,要么那么复杂,要么各种,,,老子来写个简单的
def upload(url,params): ''' 上传文件到server,不适合大文件 @params url 你懂的 @params {"action":"xxx ...
- silverlight wpf Command提交时输入验证
silverlight 或WPF在MVVM模式中使用INotifyDataErrorInfo接口对输入进行验证时 控件lostFocus时会触发验证,但在提交动作(例如button的Command)时 ...
- 2016 ICPC CAMP Recording
等了好久终于等到今天 马上能和群巨们一起学习了 希望不要暴露我太弱的本质............ 北京不冷,就是风大~~~ 1.24 8点准时起床了,准备下楼吃早饭 (这个宾馆好多美美的空姐对面就是东 ...
- ubuntu16.04安装破解pycharm
分两步,首先安装jdk,然后安装并破解pycharm 一.安装jdk 参考:http://blog.csdn.net/yebhweb/article/details/55098189 下载jdk1.8 ...
- bzoj2150: 部落战争(匈牙利)
2150: 部落战争 题目:传送门 题解: 辣鸡数据..毁我AC率 先说做法,很容易就可以看出是二分图匹配的最小路径覆盖(可能是之前不久刚做过类似的题) 一开始还傻逼逼的去直接连边然后准备跑floyd ...
- 简单的beego分页功能代码
一个简单的beego分页小插件(源代码在最下面): 支持条件查询 支持参数保留 支持自定义css样式 支持表/视图 支持参数自定义 默认为pno 支持定义生成链接的个数 使用方式: 1)action中 ...
- MySQL表不能修改、删除等操作,卡死、锁死情况的处理办法。
MySQL如果频繁的修改一个表的数据,那么这么表会被锁死.造成假死现象. 比如用Navicat等连接工具操作,Navicat会直接未响应,只能强制关闭软件,但是重启后依然无效. 解决办法: 首先执行: ...
- 递归版快速排序-JS代码
"use strict" var arr1=[11,21,3,4,0]; function qSort(arr){ var mid,left,right,len,i,j,empty ...
- java中三个类别加载器的关系以及各自加载的类的范围
Java在需要使用类别的时候,才会将类别加载,Java的类别载入是由类别载入器(Class loader)来达到的,预设上,在程序启动之后,主要会有三个类别加载器:Bootstrap Loader.E ...