luogu2331 [SCOI2005]最大子矩阵
题目大意
这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。1≤n≤100,1≤m≤2,1≤k≤10。
思路

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; #define Update(x, y) x = max(x, y)
const int MAX_ROW = 110, MAX_COL = 5, MAX_K = 15, MAX_STATE = 5, MINF = 0xcfcfcfcf;
int F[MAX_ROW][MAX_STATE][MAX_K];
int A[MAX_ROW][MAX_COL];
int TotRow, TotCol, K; int DP1()
{
memset(F, 0xcf, sizeof(F));
F[0][0][0] = 0;
for (int i = 1; i <= TotRow; i++)
{
for (int k = 0; k <= K; k++)
{
Update(F[i][0][k], F[i - 1][0][k]),
Update(F[i][0][k], F[i - 1][1][k]); if (k >= 1)
Update(F[i][1][k], A[i][1] + F[i - 1][0][k - 1]),
Update(F[i][1][k], A[i][1] + F[i - 1][1][k - 1]);
Update(F[i][1][k], A[i][1] + F[i - 1][1][k]);
}
}
return max(F[TotRow][0][K], F[TotRow][1][K]);
} int DP2()
{
memset(F, 0xcf, sizeof(F));
F[0][0][0] = 0;
for (int i = 1; i <= TotRow; i++)
for (int k = 0; k <= K; k++)
{
for (int j = 0; j <= 4; j++)
Update(F[i][0][k], F[i - 1][j][k]); if (k >= 1)
for (int j = 0; j <= 4; j++)
Update(F[i][1][k], A[i][1] + F[i - 1][j][k - 1]);
Update(F[i][1][k], A[i][1] + F[i - 1][1][k]);
Update(F[i][1][k], A[i][1] + F[i - 1][3][k]); if (k >= 1)
for (int j = 0; j <= 4; j++)
Update(F[i][2][k], A[i][2] + F[i - 1][j][k - 1]);
Update(F[i][2][k], A[i][2] + F[i - 1][2][k]);
Update(F[i][2][k], A[i][2] + F[i - 1][3][k]); if (k >= 2)
for (int j = 0; j <= 4; j++)
Update(F[i][3][k], A[i][1] + A[i][2] + F[i - 1][j][k - 2]);
if (k >= 1)
Update(F[i][3][k], A[i][1] + A[i][2] + F[i - 1][1][k - 1]),
Update(F[i][3][k], A[i][1] + A[i][2] + F[i - 1][2][k - 1]);
Update(F[i][3][k], A[i][1] + A[i][2] + F[i - 1][3][k]); if (k >= 1)
for (int j = 0; j <= 4; j++)
Update(F[i][4][k], A[i][1] + A[i][2] + F[i - 1][j][k - 1]);
Update(F[i][4][k], A[i][1] + A[i][2] + F[i - 1][4][k]);
}
int ans = MINF;
for (int i = 0; i <= 4; i++)
Update(ans, F[TotRow][i][K]);
return ans;
} int main()
{
scanf("%d%d%d", &TotRow, &TotCol, &K);
for (int i = 1; i <= TotRow; i++)
for (int j = 1; j <= TotCol; j++)
scanf("%d", &A[i][j]);
if (TotCol == 1)
printf("%d\n", DP1());
else
printf("%d\n", DP2());
}
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int MAX_ROW = 110, MAX_COL = 5, MAX_K = 15, MINF = 0xcfcfcfcf;
int F[MAX_ROW][MAX_ROW][MAX_K];
int A[MAX_ROW][MAX_COL];
int Sum[MAX_ROW][MAX_COL];
int TotRow, TotCol, K; void InitSum()
{
for (int row = 1; row <= TotRow; row++)
for (int col = 1; col <= TotCol; col++)
Sum[row][col] = Sum[row - 1][col] + Sum[row][col - 1] - Sum[row - 1][col - 1] + A[row][col];
} int GetSum(int row1, int col1, int row2, int col2)
{
return Sum[row2][col2] - Sum[row2][col1 - 1] - Sum[row1 - 1][col2] + Sum[row1 - 1][col1 - 1];
} int DP1()
{
memset(F, 0xcf, sizeof(F));
F[0][0][0] = 0;
for (int i = 1; i <= TotRow; i++)
{
for (int k = 0; k <= K; k++)
{
F[i][0][k] = F[i - 1][0][k];
if (k >= 1)
for (int j = 1; j <= i; j++)
F[i][0][k] = max(F[i][0][k], F[j - 1][0][k - 1] + GetSum(j, 1, i, 1));
}
}
return F[TotRow][0][K];
} int DP2()
{
memset(F, 0xcf, sizeof(F));
F[0][0][0] = 0;
for (int i = 0; i <= TotRow; i++)
{
for (int j = 0; j <= TotRow; j++)
{
for (int k = 0; k <= K; k++)
{
if (i >= 1)
F[i][j][k] = max(F[i][j][k], F[i - 1][j][k]);
if (j >= 1)
F[i][j][k] = max(F[i][j][k], F[i][j - 1][k]);
if (k >= 1)
{
for (int i1 = 1; i1 <= i; i1++)
F[i][j][k] = max(F[i][j][k], F[i1 - 1][j][k - 1] + GetSum(i1, 1, i, 1));
for (int j1 = 1; j1 <= j; j1++)
F[i][j][k] = max(F[i][j][k], F[i][j1 - 1][k - 1] + GetSum(j1, 2, j, 2));
if (i == j)
for (int i1 = 1; i1 <= i; i1++)
F[i][j][k] = max(F[i][j][k], F[i1 - 1][i1 - 1][k - 1] + GetSum(i1, 1, j, 2));
}
}
}
}
return F[TotRow][TotRow][K];
} int main()
{
scanf("%d%d%d", &TotRow, &TotCol, &K);
for (int i = 1; i <= TotRow; i++)
for (int j = 1; j <= TotCol; j++)
scanf("%d", &A[i][j]);
InitSum();
if (TotCol == 1)
printf("%d\n", DP1());
else
printf("%d\n", DP2());
}
luogu2331 [SCOI2005]最大子矩阵的更多相关文章
- BZOJ 1084: [SCOI2005]最大子矩阵 DP
1084: [SCOI2005]最大子矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1084 Description 这里有一个n* ...
- 1084: [SCOI2005]最大子矩阵
1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1325 Solved: 670[Submit][Stat ...
- bzoj千题计划198:bzoj1084: [SCOI2005]最大子矩阵
http://www.lydsy.com/JudgeOnline/problem.php?id=1084 m=1: dp[i][j] 前i个数,选了j个矩阵的最大和 第i个不选:由dp[i-1][j] ...
- 【BZOJ 1084】 1084: [SCOI2005]最大子矩阵 (DP)
1084: [SCOI2005]最大子矩阵 Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第 ...
- BZOJ(6) 1084: [SCOI2005]最大子矩阵
1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3566 Solved: 1785[Submit][Sta ...
- [Luogu 2331] [SCOI2005]最大子矩阵
[Luogu 2331] [SCOI2005]最大子矩阵 题目描述 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 输入输出格式 ...
- 洛谷P2331 [SCOI2005]最大子矩阵 DP
P2331 [SCOI2005]最大子矩阵 题意 : 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 第一行为n,m,k(1≤n≤ ...
- [bzoj1084][SCOI2005]最大子矩阵_动态规划_伪·轮廓线dp
最大子矩阵 bzoj-1084 SCOI-2005 题目大意:给定一个n*m的矩阵,请你选出k个互不重叠的子矩阵使得它们的权值和最大. 注释:$1\le n \le 100$,$1\le m\le 2 ...
- [SCOI2005]最大子矩阵
题目描述 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 输入输出格式 输入格式: 第一行为n,m,k(1≤n≤100,1≤m≤2 ...
随机推荐
- body全屏css/网页全屏设置/全屏样式
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- Android 获取android安装apk框的安装状态(如点击取消、返回)
最近鼓捣android,碰到个问题,因为没有root权限,需要调用Intent安装apk,但需要获取用户是否安装了(如,用户点击了返回或取消),查了很多文章,最后可以解决,但有瑕疵,解决方法如下: p ...
- SQL练习题_用户购买收藏记录合并(拼多多)
目录 拼多多笔试题0805_统计用户数据 笔试题描述 表格构建 数据观察 题目分析 一.合并表格 二.CASE表示(0,1) 三.同理复制FORK表 题目解答 拼多多笔试题0805_统计用户数据 笔试 ...
- win32绘图基础
获取设备环境句柄: (1)WM_PAINT消息中: PAINTSTRUCT ps; HDC hdc = BeginPaint(hwnd,&ps); EndPaint(hwnd,&ps ...
- JS——模拟百度搜索
注意事项: 1.for循环移除子节点时,其长度是变化的 2.在文档流中,input.img.p等标签与其他标签有3px的距离,利用左浮动,可以消除3px距离 3.背景图片定位时,第一个值是x轴方向的值 ...
- 六时出行 App 隐私政策
六时出行 App 隐私政策 本应用尊重并保护所有使用服务用户的个人隐私权.为了给您提供更准确.更有个性化的服务,本应用会按照本隐私权政策的规定使用和披露您的个人信息.但本应用将以高度的勤勉.审慎义 ...
- 1、DataGridView
DataGridView赋值后 通过RowPostPaint事件绘制行号 private void AddXh() { DataGridViewTextBoxColumn col = new Data ...
- js-2018-11-01 关于break和continue语句
1.label语句 语法:label: statement 加标签语句一般都要与for语句等循环语句配合使用. 2.break语句 立即退出循环,强制执行循环后面的语句. 3.continue语句 立 ...
- BZOJ 2501 [usaco2010 Oct]Soda Machine
[题意概述] 给出一个[0,1,000,000,000]的整数数轴,刚开始每个位置都为0,有n个区间加操作,最后询问数轴上最大的数是多少. [题解] 我写的是离散化后线段树维护区间最值. 其实貌似不用 ...
- 【CodeCraft-19 and Codeforces Round #537 (Div. 2) C】Creative Snap
[链接] 我是链接,点我呀:) [题意] 横坐标1..2^n对应着2^n个复仇者的基地,上面有k个复仇者(位置依次给出). 你是灭霸你要用以下方法消灭这k个复仇者: 一开始你获取整个区间[1..2^n ...