BZOJ 2154/2693 Crash的数字表格/jzptab (莫比乌斯反演)
题目大意:求$\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$的和
易得$\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{ij}{gcd(i,j)}$
套路1:提取出$gcd$
$\sum_{k=1}^{n}\frac{1}{k}\sum_{i=1}^{n}\sum_{j=1}^{m}ij$
$\sum_{k=1}^{n}k\sum_{i=1}^{\left \lfloor \frac{n}{k} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{m}{k} \right \rfloor}ij$
$\sum_{k=1}^{n}k\sum_{i=1}^{\left \lfloor \frac{n}{k} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{m}{k} \right \rfloor}\sum_{d|gcd(i,j)}\mu(d)$
套路2:继续提取$gcd$
$\sum_{k=1}^{n}k\sum_{d=1}^{\left \lfloor \frac{n}{k} \right \rfloor}\sum_{i=1}^{\left \lfloor \frac{n}{k} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{m}{k} \right \rfloor}[gcd(i,j)==d]ij$
$\sum_{k=1}^{n}k\sum_{d=1}^{\left \lfloor \frac{n}{k} \right \rfloor}d^{2}\sum_{i=1}^{\left \lfloor \frac{n}{kd} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{m}{kd} \right \rfloor}ij$
$\sum_{i=1}^{\left \lfloor \frac{n}{kd} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{m}{kd} \right \rfloor}ij$可以$O(1)$计算出来
套路3:令$Q=kd$
$\sum_{Q=1}^{n}\sum_{i=1}^{\left \lfloor \frac{n}{Q} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{m}{Q} \right \rfloor}ij\sum_{d|Q}\frac{Q}{d}(d)^{2}\mu(d)$
$\sum_{d|Q}\frac{Q}{d}(d)^{2}\mu(d)$显然是积性函数
然后问题就解决了
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 10010000
#define maxn 10000000
#define ll long long
#define uint unsigned int
#define rint register int
using namespace std; int n,m,T,cnt;
int mu[N],pr[N],use[N];
int f[N],F[N];
const int mod=; void Pre()
{
mu[]=;f[]=;
for(int i=;i<=maxn;i++)
{
if(!use[i]) pr[++cnt]=i,mu[i]=-,f[i]=(1ll*i*(-i))%mod;
for(rint j=;j<=cnt&&i*pr[j]<=maxn;j++){
use[i*pr[j]]=;
if(i%pr[j]){
mu[i*pr[j]]=-mu[i];
f[i*pr[j]]=1ll*f[i]*f[pr[j]]%mod;
}else{
mu[i*pr[j]]=;
f[i*pr[j]]=1ll*f[i]*pr[j]%mod;
break;
}
}
}
for(int i=;i-<=maxn;i+=)
{
F[i+]=(1ll*F[i-]+f[i+])%mod;
F[i+]=(1ll*F[i+]+f[i+])%mod;
F[i+]=(1ll*F[i+]+f[i+])%mod;
F[i+]=(1ll*F[i+]+f[i+])%mod;
}
}
ll solve(int n,int m)
{
ll ans=,sn,sm;
if(n>m) swap(n,m);
for(int i=,la;i<=n;i=la+)
{
la=min(n/(n/i),m/(m/i));
sn=(1ll*(n/i)*(n/i+)/)%mod;
sm=(1ll*(m/i)*(m/i+)/)%mod;
(ans+=1ll*sn*sm%mod*(F[la]-F[i-]))%=mod;
}ans=(ans%mod+mod)%mod;
return ans;
} int main()
{
//freopen("t1.in","r",stdin);
scanf("%d",&T);
Pre();
int n,m;
while(T--)
{
scanf("%d%d",&n,&m);
printf("%lld\n",solve(n,m));
}
return ;
}
调试部分的代码..留个纪念吧
int ps[N],son[N],d[N],num,nson;
void dfs_son(int s,int dep)
{
if(dep>num) {son[++nson]=s;return;}
for(int j=;j<=d[dep];j++)
dfs_son(s,dep+),s*=ps[dep];
}
ll g[N];
void check()
{
for(int i=;i<=maxn;i++){
int sq=sqrt(i),x=i;
num=nson=;
for(int j=;j<=cnt&&pr[j]<=sq;j++)
if(x%pr[j]==){
ps[++num]=pr[j];
while(x%pr[j]==) d[num]++,x/=pr[j];
}
if(x!=) ps[++num]=x,d[num]=;
dfs_son(,);
for(int j=;j<=nson;j++)
(g[i]+=mu[son[j]]*son[j]%mod)%=mod,
son[j]=;
g[i]=g[i]*i%mod;
for(int i=;i<=num;i++)
d[i]=;
}
}
BZOJ 2154/2693 Crash的数字表格/jzptab (莫比乌斯反演)的更多相关文章
- [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...
- 【BZOJ 2154】Crash的数字表格 (莫比乌斯+分块)
2154: Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能 ...
- 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...
- [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演
---题面--- 题解: $$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}{\frac{ij}{gcd(i, j)}}$$ 改成枚举d(设n < m) $$ans ...
- P1829 [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演
又一道...分数和取模次数成正比$qwq$ 求:$\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j)$ 原式 $=\sum_{i=1}^N\sum_{j=1}^M\frac{i*j}{g ...
- luoguP1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题意 注:默认\(n\leqslant m\). 所求即为:\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 因为\(i*j=\gcd(i, ...
- 【BZOJ2154】Crash的数字表格(莫比乌斯反演)
[BZOJ2154]Crash的数字表格(莫比乌斯反演) 题面 BZOJ 简化题意: 给定\(n,m\) 求\[\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)\] 题解 以下的一切都 ...
- BZOJ2154/BZOJ2693/Luogu1829 Crash的数字表格/JZPFAR 莫比乌斯反演
传送门--Luogu 传送门--BZOJ2154 BZOJ2693是权限题 其中JZPFAR是多组询问,Crash的数字表格是单组询问 先推式子(默认\(N \leq M\),所有分数下取整) \(\ ...
- BZOJ2154 Crash的数字表格 【莫比乌斯反演】
BZOJ2154 Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b) ...
随机推荐
- 洛谷1613 跑路 倍增 + Floyd
首先,我们一定要认识到本题中的最短时间所对应的道路不一定是在起点到终点的最短路.例如,起点到终点的最短路为 151515 ,那么对 151515 进行二进制拆分的话是 111111111111 ,这时 ...
- .net基础总复习(2)
第二天 文件操作常用类 File类 //操作文件的 //复制.剪切.创建.移除 //File.Create(@"C:\Users\BDSOFT\Desktop\new.txt" ...
- cf掉分记——Avito Code Challenge 2018
再次作死的打了一次cf的修仙比赛感觉有点迷.. 还好掉的分不多(原本就太低没法掉了QAQ) 把会做的前三道水题记录在这.. A: Antipalindrome emmmm...直接暴力枚举 code: ...
- 2019-03-18 Python time 将2015年11月20日转换为2015-11-20
#ReportingDate = soup.select('body > div.main > div > div.ctr > div.recruit > ul > ...
- 洛谷 P1147 连续自然数和 (滑动窗口)
维护一个滑动窗口即可 注意不能有m到m的区间,因为区间长度要大于1 #include<cstdio> #define _for(i, a, b) for(int i = (a); i &l ...
- cocos2d-x学习笔记(18)--游戏打包(windows平台)
cocos2d-x学习笔记(18)--游戏打包(windows平台) 之前做好的游戏,都是在vs2008下编译执行的.假设说想把游戏公布到网上或者和其它人一起分享游戏,那就得对游戏 ...
- HDU 4332 Contest 4
顶好的一道题.其实,是POJ 2411的升级版.但POJ 2411我用的插头DP来做,一时没想到那道题怎么用状态DP,于是回头看POJ 2411那一道的状态DP,其实也很简单,就是每一行都设一个状态, ...
- web服务启动spring自己主动运行ApplicationListener的使用方法
我们知道.一般来说一个项目启动时须要载入或者运行一些特殊的任务来初始化系统.通常的做法就是用servlet去初始化.可是servlet在使用spring bean时不能直接注入,还须要在web.xml ...
- oracle 10g/11g 命令对照,日志文件夹对照
oracle 10g/11g 命令对照,日志文件夹对照 oracle 11g 中不再建议使用的命令 Deprecated Command Replacement Commands crs_st ...
- html单行、多行文本溢出隐藏
欢迎加入前端交流群来py:749539640 单行: div{/* 单行溢出隐藏 */ width: 150px; white-space: nowrap; overflow: hidden; tex ...