首先反思一下, 昨天做1.14的时候犯了一个严重错误。思维定式了,导致花了非常多无用功。

1.14的关键是要想到2个物理意义。 一个是广度优先, 也就是仅仅考虑问题递归树的第一层子数。那么必定有公式

F(n,m) = F(n- c1, m) + ... + F(n-cm, m) + 1   c1..cm为货币价值, m为货币树。

利用这个公式,我们非常easy用数学归纳法证明存在一个參数C1,满足F(n,m) > C1 * n的m次方。

可是,利用这个公式,我们是无法证明存在一个參数C2。满足F(n。m) < C2 * n的m次方。

根本原因是犯了数学竞赛中不等式证明的常规错误。 如果条件太宽了。

这样,就必须考虑第二个物理意义。  有第一种货币,和没第一种货币 2种集合。

基于如果,我们能够设定第一种货币的价值为1。且为最小货币。

这样就得到了一个不同于上面广度优先的深度遍历公式。

F(n,m) = n + F(n , m -1) +F(n -1, m-1) + ...+ F(0, m- 1) 分别相应第一种货币选择 0次,1次,..., n次

由这个公式,我们是非常easy证明上界的。 但要用这个公式证明下界, 则非常难。

1.16-1.19主要是讲怎样对数次求一个数的幂次方。

坦率的说。 书本的解说不是那么让人easy理解。

假设我们考虑二进制, 则问题就非常easy了。

如果b为5。 则2进制为 101, a的5次方则为   (1) * a 的四次方 * (什么也不做)  *  a

那么, 问题就非常明确了, 无论是迭代还是递归,干的都是一个事情, 从低位開始求b的二进制, 假设为1, 则做乘法。0就无视。

每次将base平方。

这4道题。 用后面的高阶函数来看的话,本质都是一样的。他们仅仅有算子的区别。

即F函数的n次方, 等价于将n转化为2进制, 依次求f函数的平方运算。

关于Fib数列。 书本的题目过于数学化, 我们换一个形式, 用数学工具矩阵来描写叙述就非常明确了。

列矩阵[Fn+1 Fn]  = 矩阵A * 列矩阵Fn  Fn-1]

矩阵A为  2 * 2的矩阵 [1 1

1 0]

求Fib数列就转化为求A矩阵的n次方了。

个人參考解答例如以下:

1.16

(define (expt b n)

    (define (even? n)

(= (remainder n 2) 0))

    (define (square x) (* x x))

    (define (improve x)

(if (even? x)

   (/ x 2)

   (/ (- x 1) 2)))

    (define (fast-expt-iter b counter product)

(if (= counter 0)

   product

   (if (even?

counter)

(fast-expt-iter (square b) (improve counter) product)

(fast-expt-iter (square b) (improve counter) (* product b)))))

    (fast-expt-iter b n 1.0))

1.17

(define (mult-new a b)

    (define (even? b)

(= (remainder b 2) 0))

    (define (double x) (+ x x))

    (define (halve x)

   (/ x 2))

    (define (fast-mult-new a b)

(cond ((= b 0) 0)

     ((even? b) (double (fast-mult-new a (halve b))))

     (else (+ a (fast-mult-new a (- b 1))))))

    (fast-mult-new a b))

1.18

(define (mult-new a b)

    (define (even?

b)

(= (remainder b 2) 0))

    (define (double x) (+ x x))

    (define (halve x) (/ x 2))

    (define (improve x)

(if (even?

x)

   (halve x)

   (halve (- x 1))))

    (define (fast-mult-iter a counter product)

(if (= counter 0)

   product

   (if (even? counter)

(fast-mult-iter (double a) (improve counter) product)

(fast-mult-iter (double a) (improve counter) (+ product a)))))

    (fast-mult-iter a b 0.0))

1.19

p' = p^2 + q^2

q' = 2*p*q + q^2

(define (fib n)

    (define (calc-p p q)

(+ (* p p)

  (* q q)))

    (define (calc-q p q)

(+ (* 2 p q)

  (* q q)))

    (define (fib-iter a b p q count)

(cond ((= count 0) b)

     ((even? count)

      (fib-iter a

b

(calc-p p q)

(calc-q p q)

(/ count 2)))

     (else (fib-iter (+ (* b q) (* a q) (* a p))

     (+ (* b p) (* a q))

     p

     q

     (- count 1)))))

    (fib-iter 1 0 0 1 n))

SICP 习题1.16-1.19体会的更多相关文章

  1. SICP 习题 (1.10)解题总结

    SICP 习题 1.10 讲的是一个叫“Akermann函数”的东西,去百度查可以查到对应的中文翻译,叫“阿克曼函数”. 就像前面的解题总结中提到的,我是一个数学恐惧者,看着稍微复杂一点的什么函数我就 ...

  2. SICP 习题 (1.41)解题总结

    SICP 习题1.41 看似和周边的题目没有关系,突然叫我们去定义一个叫double的过程,事实上这道题的核心还是高阶函数. 题目要求我们定义一个过程double,它以一个过程作为參数,这个作为參数的 ...

  3. SICP 习题 (1.7) 解题总结

    SICP 习题 1.7 是对正文1.1.7节中的牛顿法求平方根的改进,改进部分是good-enough?过程. 原来的good-enough?是判断x和guess平方的差值是否小于0.001,这个过程 ...

  4. SICP 习题 (1.14)解题总结

    SICP 习题 1.14要求计算出过程count-change的增长阶.count-change是书中1.2.2节讲解的用于计算零钱找换方案的过程. 要解答习题1.14,首先你需要理解count-ch ...

  5. SICP 习题 (1.8) 解题总结

    SICP 习题1.8需要我们做的是按照牛顿法求平方根的方法做一个求立方根的过程. 所以说书中讲牛顿法求平方根的内容还是要好好理解,不然后面这几道题做起来就比较困难. 反过来,如果理解了牛顿法求平方根的 ...

  6. SICP 习题 (1.9) 解题总结

    SICP 习题 1.9 开始针对“迭代计算过程”和“递归计算过程”,有关迭代计算过程和递归计算过程的内容在书中的1.2.1节有详细讨论,要完成习题1.9,必须完全吃透1.2.1节的内容,不然的话,即使 ...

  7. SICP 习题 (1.13) 解题总结

    SICP习题1.13要求证明Fib(n)是最接近φn/√5 的整数,其中φ=(1+√5)/2 .题目还有一个提示,提示解题者利用归纳法和斐波那契数的定义证明Fib(n)=(φn - ψn) / √5 ...

  8. SICP 习题 (2.7) 解题总结 : 定义区间数据结构

    SICP 习题 2.7 開始属于扩展练习,能够考虑不做,对后面的学习没什么影响.只是,假设上面的使用过程表示序对,还有丘奇计数你都能够理解的话,完毕这些扩展练习事实上没什么问题. 习题2.7是要求我们 ...

  9. SICP 习题 (2.6) 解题总结:丘奇计数

    SICP 习题 2.6 讲的是丘奇计数,是习题2.4 和 2.5的延续. 这里大师们想提醒我们思考的是"数"究竟是什么,在计算机系统里能够怎样实现"数".准备好 ...

  10. SICP 习题 (1.37)解题总结

    SICP 习题 1.37是一条非常长的题目,主要讲的是无穷连分式.无穷连分式对我来说又是一个陌生的概念,于是又去百度了一番,发现无穷连分式也是一个非常有意思的话题,涉及到无理数的表达.只是我建议大家还 ...

随机推荐

  1. 延时提示框制作思路[简单javascript案例]

    模拟QQ软件中的弹出提示框功能,制作一个简易的延时提示框. 功能实现: 1.当鼠标移入指定区块时,弹出隐藏的区块:当鼠标移出指定区块时,弹出的隐藏区块再次隐藏. 2.同时要求在鼠标移入该弹出区块后,区 ...

  2. BZOJ 1511 KMP

    题意:求出每个前缀的最长周期之和(等于本身的算0) 思路: 求出来next数组  建出next树 找到不为0的最小的 n减去它就是答案 //By SiriusRen #include <cstd ...

  3. poj 1564 Sum It Up 搜索

    题意: 给出一个数T,再给出n个数.若n个数中有几个数(可以是一个)的和是T,就输出相加的式子.不过不能输出相同的式子. 分析: 运用的是回溯法.比较特殊的一点就是不能输出相同的式子.这个可以通过ma ...

  4. node 连接MySQL及其分装, 连接池连接

    const mysql = require('mysql') const config = require('./../../config/config.default') var connectio ...

  5. 【Bootstrap】如何让响应式图片(img-responsive)水平居中

    我们在用bootstrap排版内容的时候,有的时候在内容中需要图片水平居中对齐. 一般情况下,我们的图片都使用了 .img-responsive 类来实现响应式图片.如果需要实现响应式图片水平居中,那 ...

  6. android keystore的生成和使用

    android要求所有的程序必须有签名,否则就不会安装该程序.在我们开发过程中,adt使用debug keystore,在 preference->android->buid中设置.deb ...

  7. 洛谷P1781 宇宙总统【排序+字符串】

    地球历公元6036年,全宇宙准备竞选一个最贤能的人当总统,共有n个非凡拔尖的人竞选总统,现在票数已经统计完毕,请你算出谁能够当上总统. 输入输出格式 输入格式: president.in 第一行为一个 ...

  8. 【3】Django创建第一个项目

    天地所以能长且久者,以其不自生,故能长生. --老子<道德经> 写在前面:Django在学习的过程中,我们会参考官方文档,从两部分进行讲解,第一部分主要是一个入门项目的搭建开发,第二部分是 ...

  9. 1.VMware虚拟机的安装

    1.找到安装软件 2.使用如下操作安装 3.选择接受协议 4.修改安装目录 5.如果上一步有修改,此步骤不用改路径 7.安装后创建桌面快捷方式 8.安装成功可以看到桌面上有快捷方式图标 安装结束 声明 ...

  10. BALNUM - Balanced Numbers

    BALNUM - Balanced Numbers Time limit:123 ms Memory limit:1572864 kB Balanced numbers have been used ...