树状数组(Binary Indexed Tree)
树状数组(Binary Indexed Tree,BIT) 是能够完成下述操作的数据结构。
给一个初始值全为 0 的数列 a1, a2, ..., an
(1)给定 i,计算 a1+a2+...+ai
(2)给定 i 和 x,执行 ai += x
1.基于线段树的实现
如果使用线段树,只需要做少许修改就可以实现这两个功能。线段树的每个节点上维护的是对应区间的和。
接下来看如何计算从 s 到 t 的和(as + as+1 + ... + at)。在基于线段树的实现这个和是可以直接求得的。
但是如果我们能够计算(从 1 到 t 的和) - (从 1 到 s - 1 的和),同样可以得到 s 到 t 的和。也就是说,只要对于任意 i,我们都能计算出 1 到 i 的部分和就可以了。
可以发现,线段树上的每个节点的右儿子的值都不需要了(在计算时如果要使用这个点的值,那么它的左边的兄弟的值也一定会用到,这个时候只需要使用它们的父亲的值就可以了)。
基于上面的思路得到的数据结构就是 BIT。比起线段树,BIT实现起来更方便,速度也更快。
2. BIT的结构
BIT 使用数组维护下图所示的部分和
也就是把线段树中不需要的节点去掉之后,再把剩下的节点对应到数组中。对比每个节点对应的区间的长度和节点编号的二进制表示。以 1 结尾的 1, 3, 5, 7 的长度是1, 最后有 1 个 0 的2, 6 的长度是2,最后有两个 0 的 4 的长度是 4 .... 这样,编号的二进制表示就能够和区间非常容易地对应起来。利用这个性质,BIT 可以通过非常简单的位运算实现。
3. BIT的求和
计算前 i 项的和需要从 i 开始,不断把当前位置 i 的值加入到结果中, 并从 i 中减去 i 的二进制最低非 0 位对应的幂,直到 i 变为 0 为止。i 的二进制的最后一个 1 可以通过 i & - i 得到。
4.BIT的值的更新
使第 i 项的值增加 x 需要从 i 开始,不断把当前位置 i 的值增加 x, 并把 i 的二进制最低非 0 位对应的幂加到 i 上。
5. BIT的复杂度
总共需要对O(log n)个值进行操作,所以复杂度是O(log n)。
6. BIT的实现
提一下 i -= i & -i 可以写为 i = i &(i - 1)
// [1, n]
int bit[MAX_N + ], n; int sum(int i) {
int s = ;
while (i > ) {
s += bit[i];
i -= i & -i;
}
return s;
} void add(int i, int x) {
while (i <= n) {
bit[i] += x;
i += i & -i;
}
}
//本来想把代码补完整的。。参考线段树就行,但是后面会有综述我就不补了
7. 二维BIT
BIT 可以方便地扩展到二维的情况。对于 W * H 的二维 BIT 只需建立 H 个大小为 x 轴方向元素个数 W 的 BIT,然后把这些 BIT 通过 y 轴方向的 BIT 管理起来就可以了。也就是说,y 轴方向的 BIT 的每个元素不是整数,而是一个 x 轴方向的 BIT。这样所有的操作的复杂度都是 O(log W * log H)。用同样的方法可扩展到更高的维度。
// emm
8. 需要运用 BIT 的问题
冒泡排序的复杂度是 O(n2),所以无法模拟过程。选用适当的数据结构可以解决这个问题。
所求的交换次数等价于 满足 i < j , ai > aj 的 i 的个数,(这种数对的个数叫做逆序数)。而对于每一个 j,如果能够快速求出满足 i < j, ai > aj 的 i 的个数,那么问题就解决了。我们构建一个值的范围是 1 ~ n 的 BIT,按照 j = 0, 1, 2, ..., n-1 的顺序进行如下操作。
(1)把 j - (BIT查询得到的前 aj 项的和)加到答案中
(2)把 BIT 中 aj 位置上的值加 1
对于每一个 j, (BIT查询得到的前 aj 项的和)就是满足i < j , ai > aj 的 i 的个数。因此把这个值从 j 中减去之后,得到的就是满足 i < j , ai > aj 的 i 的个数。由于对于每一个 j 的复杂度是O(log n),所以整个算法的复杂度是O(n log n)。
// 但实际上实现计算逆序数更简单的算法是通过分治思想利用归并排序计算
typedef long long ll;
int n, a[MAX_N];
//省略BIT部分代码
void solve() {
ll ans = ;
for (int j = ; j < n; j++) {
ans += j - sum(a[j]);
add(a[j], );
}
printf("%lld\n", ans);
}
树状数组可以高效地求出连续的一段元素之和或者更新单个元素的值。但是无法高效地给某一个区间里的所有元素同时加上一个值。因此,本题无法直接使用树状数组。在这里先考虑利用线段树来求解,然后再考虑改造树状数组来求解。
对于每个节点,维护有该节点对应的区间的和,那么就可以在 O(log n)时间内求出任意区间的和。但这样就没有办法高效地实现对一个区间同时加一个值,因为需要对这个区间相关的所有节点都进行更新才可以。
为了保持线段树的高效,对于每个节点我们维护以下两个数据
(1)给这个节点对应的区间内的所有元素共同加上的值
(2)在这个节点对应的区间中除去(1)之外其他的值的和
通过单独维护共同加上的值,给区间同时加上一个值的操作就可以高效地进行了。如果对于父亲节点同时加了一个值,那么这个值就不会在儿子节点被重复考虑。在递归计算和时再把这一部分的值加到结果里面就可以了。这样,不论是同时加一个值还是查询一段的和的复杂度都是O(log n)。
(1)T 是操作的种类。第 i 个操作的 T[ i ] 是 C 的话,就是给区间同时加上一个值,是 Q 的话则是查询一段的和。
(2)A, L, R 都是以 0 为下标起点的。
typedef long long ll;
const int DAT_SIZE = ( << ) - ; int N, Q;
int A[MAX_N];
char T[MAX_Q];
int L[MAX_Q], R[MAX_Q], X[MAX_Q]; // 线段树
ll data[DATA_SIZE], datb[MAX_SIZE]; // 对区间[a, b]同时加 x
// k 是节点的编号,对应的区间是(l, r)
void add(int a, int b, int x, int k, int l, int r) {
if (a <= l && r <= b)
data[k] += x;
else if (l < b && a < r) {
datb[k] += (min(b, r) - max(a, l)) * x;
add(a, b, x, k * + , l, (l + r) / );
add(a, b, x, k * + , (l + r) / , r);
}
} // 对区间[a, b]同时加 x
// k 是节点的编号,对应的区间是(l, r)
ll sum(int a, int b, int k, int l, int r) {
if (b <= || r <= a) return ;
else if (a <= && r <= b) return data[k] * (r - ) + data[k];
else {
ll res = (min(b, r) - max(a, l)) * data[k];
res += sum(a, b, k * + , l, (l + r) / );
res += sum(a, b, k * + , (l + r) / , r);
return res;
}
} void solve() {
for (int i = ; i < N; i++)
add(i, i + , A[i], , , N);
for (int i = ; i < Q; i++) {
if (T[i] == 'C')
add(L[i], R[i] + , X[i], , , N);
else
printf("%lld\n", sum(L[i], R[i] + , , , N));
}
}
未完待续
树状数组(Binary Indexed Tree)的更多相关文章
- 树状数组(Binary Indexed Tree) 总结
1.“树状数组”数据结构的一种应用 对含有n个元素的数组(a[1],...,a[k],...,a[n]): (1)求出第i个到第j个元素的和,sum=a[i]+...+a[j]. 进行j-i+1次加法 ...
- 树状数组 Binary Indexed Tree/Fenwick Tree
2018-03-25 17:29:29 树状数组是一个比较小众的数据结构,主要应用领域是快速的对mutable array进行区间求和. 对于一般的一维情况下的区间和问题,一般有以下两种解法: 1)D ...
- 树状数组(Binary Indexed Tree(BIT))
先不说别的,这个博客为我学习树状数组提供了很大帮助,奉上传送门 http://blog.csdn.net/int64ago/article/details/7429868 然后就说几个常用的操作 in ...
- 树状数组(Binary Index Tree)
一维BIT(单点更新,区间求和): Problem - 1166 #include <iostream> #include <algorithm> #include <c ...
- 树状数组,Fenwick Tree
Fenwick Tree, (also known as Binary Indexed Tree,二叉索引树), is a high-performance data structure to cal ...
- 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)
题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...
- HDU 3436--Queue-jumpers (树状数组 or Splay Tree)
树状数组这个真心想了好久,还是没想出来 %%% www.cppblog.com/Yuan/archive/2010/08/18/123871.html 树状数组求前缀和大于等于k的最大值,第一次看到这 ...
- 树状数组(fenwick tree)
树状数组又称芬威克树,概念上是树状,实际上是使用数组实现的,表现为一种隐式数据结构,balabala...详情请见:https://en.wikipedia.org/wiki/Fenwick_tree ...
- NYOJ 108 士兵杀敌1(树状数组)
首先,要先讲讲树状数组: 树状数组(Binary Indexed Tree(BIT), Fenwick Tree)是一个查询和修改复杂度都为log(n)的数据结构.主要用于查询任意两位之间的所有元素之 ...
- 树状数组-HDU1541-Stars一维树状数组 POJ1195-Mobile phones-二维树状数组
树状数组,学长很早之前讲过,最近才重视起来,enmmmm... 树状数组(Binary Indexed Tree(B.I.T), Fenwick Tree)是一个查询和修改复杂度都为log(n)的数据 ...
随机推荐
- java中变量的线程安全性
静态变量:线程非安全.静态变量即类变量,位于方法区,为所有对象共享,共享一份内存,一旦静态变量被修改,其他对象均对修改可见,故线程非安全.实例变量:单例模式(只有一个对象实例存在)线程非安全,非单例线 ...
- 第j九周学习总结暨第七周实验报告
完成火车站售票程序的模拟. 要求: (1)总票数1000张: (2)10个窗口同时开始卖票: (3)卖票过程延时1秒钟: (4)不能出现一票多卖或卖出负数号票的情况. 一:实验代码 package d ...
- [转帖]教你如何修改运行中的docker容器的端口映射
教你如何修改运行中的docker容器的端口映射 在docker run创建并运行容器的时候,可以通过-p指定端口映射规则.但是,我们经常会遇到刚开始忘记设置端口映射或者设置错了需要修改.当dock ...
- transition 带的参数什么意思
过渡transition:属性名 过渡效果时间 时间速度曲线 开始时间 默认值: all 0 e ...
- kafka 教程(四)-原理进阶
kafka 最初由 Linkedin 公司开发,是一个 分布式.支持分区.多副本的,基于 zookeeper 协调的分布式发布订阅消息系统,该公司在 2010 年将 kafka 贡献给 apache ...
- luogu P2481 [SDOI2010]代码拍卖会
luogu 题目中的那个大数一定是若干个1+若干个2+若干个3...+若干个9组成的,显然可以转化成9个\(\underbrace {111...1}_{a_i个1}(0\le a_1\le a_2\ ...
- lamp项目上线流程简述 (ubuntu16.04 )
1 新建一个sudo用户,而不是直接用root操作 ① 新建用户可参考 https://www.cnblogs.com/bushuwei/p/10880182.html ② 赋予sudo权限: ...
- RateLimiter 源码分析(Guava 和 Sentinel 实现)
作者javadoop,资深Java工程师.本文已获作者授权发布. 原文链接https://www.javadoop.com/post/rate-limiter 本文主要介绍关于流控的两部分内容. 第一 ...
- window常见事件onload
1, window.onload 是窗口(页面)加载事件,当文档内容完全加载完成会触发该事件(包括图像,脚本文件,css文件等),就调用的处理函数 下面的代码,当点击按钮,并不会弹出对话框,因为页面还 ...
- PAT Basic 1039 到底买不买 (20 分)
小红想买些珠子做一串自己喜欢的珠串.卖珠子的摊主有很多串五颜六色的珠串,但是不肯把任何一串拆散了卖.于是小红要你帮忙判断一下,某串珠子里是否包含了全部自己想要的珠子?如果是,那么告诉她有多少多余的珠子 ...