给定两个整数,被除数 dividend 和除数 divisor。将两数相除,要求不使用乘法、除法和 mod 运算符。

返回被除数 dividend 除以除数 divisor 得到的商。

示例 1:

输入: dividend = 10, divisor = 3
输出: 3
示例 2: 输入: dividend = 7, divisor = -3
输出: -2
说明: 被除数和除数均为 32 位有符号整数。
除数不为 0。
假设我们的环境只能存储 32 位有符号整数,其数值范围是 [−231, 231 − 1]。本题中,如果除法结果溢出,则返回 231 − 1。

  

思路一:

就是小学时候还没学除法的时候用的办法,用被减数去重复减去减数,但是毫无疑问这种办法效率并不高。如果其中一个Integer.MAX_VALUE

另一个是1,就得循环那么多次,显然这不是做这个的好的解决办法。

思路二:

那么除了一个个将还有什么效率好的办法呢,我开始也想用移位,但是还是没能想出来,毕竟太菜。

因为dividend即被减数规定了范围,那么能够被减数能整除的最大整数就是2的31次方,那么,从2的31依次开始试探,试探数之间的关系就是二倍关系。二倍关系就跟移位操作挂上够了,左移相当于X2,右移相当于/2,如果被除数/2^i(i=31,30...1,0)的商是大于除数的,则本题答案可以加上此时的2^i,同时,将被减数减去2^i,当然,在此之前,为了避免两个数异号而带来的不便,事先将两个数字做一下绝对值处理就好了。

然后根据这条思路写出了如下代码:

class Solution {
public int divide(int dividend, int divisor) {
boolean is = false;
int res = 0;
if(dividend==0)
return 0;
if(divisor==1)
return dividend;
if(dividend==Integer.MIN_VALUE&&divisor==-1)
return Integer.MAX_VALUE;
if((dividend<0&&divisor>0)||(dividend>0&&divisor<0))
is = true;//如果异号
long divd = Math.abs(dividend);
long divs = Math.abs(divisor);
for(int i = 31;i>=0;i--){
if((divd>>i)>=divs){
res+=1<<i;
divd-=divs<<i;
}
}
return is?-res:res;//异号结果变负
}
}

测几个用例,诶好像没问题。提交,WA(哭)

输入:
-2147483648
2
输出:
0
预期:
-1073741824

  

一时半会没想通,直到看见Math.abs()的源代码:

  /**
* Returns the absolute value of an {@code int} value.
* If the argument is not negative, the argument is returned.
* If the argument is negative, the negation of the argument is returned.
*
* <p>Note that if the argument is equal to the value of
* {@link Integer#MIN_VALUE}, the most negative representable
* {@code int} value, the result is that same value, which is
* negative.
*
* @param a the argument whose absolute value is to be determined
* @return the absolute value of the argument.
*/
public static int abs(int a) {
return (a < 0) ? -a : a;
}

  

如果是Integer.MIN_VALUE,不返回绝对值,返回本身。。所以这里算是一个小坑点了,做法就是,将int转化为long来去绝对值(因为本题规定了被除数范围,如果没有规定,强制转为long也可能没用。。)

最后的AC代码:

class Solution {
public int divide(int dividend, int divisor) {
boolean is = false;
int res = 0;
if(dividend==0)
return 0;
if(divisor==1)
return dividend;
if(dividend==Integer.MIN_VALUE&&divisor==-1)
return Integer.MAX_VALUE;
if((dividend<0&&divisor>0)||(dividend>0&&divisor<0))
is = true;//如果异号
long divd = Math.abs((long)(dividend));
long divs = Math.abs((long)(divisor));
for(int i = 31;i>=0;i--){
if((divd>>i)>=divs){
res+=1<<i;
divd-=divs<<i;
}
}
return is?-res:res;//异号结果变负
}
}

[LeetCode]29 两数相除和一个小坑点的更多相关文章

  1. Java实现 LeetCode 29 两数相除

    29. 两数相除 给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor 得到的商 ...

  2. Leetcode 29.两数相除 By Python

    给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor 得到的商. 示例 1: 输 ...

  3. leetcode 29 两数相除

    问题描述 给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor 得到的商. 示例 ...

  4. LeetCode 29 - 两数相除 - [位运算]

    题目链接:https://leetcode-cn.com/problems/divide-two-integers/description/ 给定两个整数,被除数 dividend 和除数 divis ...

  5. LeetCode 29——两数相除

    1. 题目 2. 解答 2.1. 方法一 题目要求不能使用乘法.除法和除余运算,但我们可以将除法转移到对数域. \[ \frac{a}{b} = e^{\frac{lna}{lnb}} = e^{ln ...

  6. leetcode 29两数相除

    我理解本题是考察基于加减实现除法,代码如下: class Solution { public: //只用加减号实现除法, //不用加减号实现除法: int divide(int dividend, i ...

  7. 【剑指 Offer II 001. 整数除法】同leedcode 29.两数相除

    剑指 Offer II 001. 整数除法 解题思路 在计算的时候将负数转化为正数,对于32位整数而言,最小的正数是-2^31, 将其转化为正数是2^31,导致溢出.因此将正数转化为负数不会导致溢出. ...

  8. [LeetCode] 29. Divide Two Integers 两数相除

    Given two integers dividend and divisor, divide two integers without using multiplication, division ...

  9. Leetcode(29)-两数相除

    给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor 得到的商. 示例 1: 输 ...

随机推荐

  1. PAT Advanced 1019 General Palindromic Number (20 分)

    A number that will be the same when it is written forwards or backwards is known as a Palindromic Nu ...

  2. 03python面向对象编程5

    5.1 继承机制及其使用 继承是面向对象的三大特征之一,也是实现软件复用的重要手段.Python 的继承是多继承机制,即一个子类可以同时有多个直接父类. Python 子类继承父类的语法是在定义子类时 ...

  3. 双层for循环用java中的stream流来实现

    //双重for循环for (int i = 0; i < fusRecomConfigDOList.size(); i++) { for (int j = 0; j < fusRecomC ...

  4. HDU-6278-Jsut$h$-index(主席树)

    链接: https://vjudge.net/problem/HDU-6278 题意: The h-index of an author is the largest h where he has a ...

  5. 两个jquery编写插件实例

    (1) 封装基于jq弹窗插件   相信码友们对于$.fn.extexd();$.extend()以及$.fn.custom和$.custom都有一定的了解:我阐述一下我自己对于$.fn.custom和 ...

  6. 【宝藏】题解(五校联考3day1)

    分析 如果打爆搜的话可以拿60分. 首先知道期望是可以累加的,即i通过j去到k的期望,等于i去到j的期望加j去到k的期望. 所以令d[i]表示i的出度,F[i]表示从i到i的父亲的期望,G[i]表示i ...

  7. 虚拟机安装Windows系统,再安装orcale

    本文出自:http://www.cnblogs.com/2186009311CFF/p/8724441.html 1.创建新虚拟机 2.选择自定义 3.选择workstation 5.x(据安装的系统 ...

  8. js+php大文件分片上传

    1 背景 用户本地有一份txt或者csv文件,无论是从业务数据库导出.还是其他途径获取,当需要使用蚂蚁的大数据分析工具进行数据加工.挖掘和共创应用的时候,首先要将本地文件上传至ODPS,普通的小文件通 ...

  9. SPOJ 2798 QTREE3 - Query on a tree again!

    原oj题面 Time limit 2000 ms Memory limit 1572864 kB Code length Limit 50000 B OS Linux Language limit A ...

  10. 特征提取算法(4)——LoG特征提取算法

    目录 1.介绍 2.LoG原理 3.数学原理 4.模板性质 1.介绍 LoG(DoG是一阶边缘提取)是二阶拉普拉斯-高斯边缘提取算法,先高斯滤波然后拉普拉斯边缘提取. Laplace算子对通过图像进行 ...