[LeetCode] 272. Closest Binary Search Tree Value II 最近的二分搜索树的值之二
Given a non-empty binary search tree and a target value, find k values in the BST that are closest to the target.
Note:
- Given target value is a floating point.
- You may assume k is always valid, that is: k≤ total nodes.
- You are guaranteed to have only one unique set of k values in the BST that are closest to the target.
Example:
Input: root = [4,2,5,1,3], target = 3.714286, and k = 2
4
/ \
2 5
/ \
1 3
Output: [4,3]
Follow up:
Assume that the BST is balanced, could you solve it in less than O(n) runtime (where n = total nodes)?
这道题是之前那道 Closest Binary Search Tree Value 的拓展,那道题只让找出离目标值最近的一个节点值,而这道题让找出离目标值最近的k个节点值,难度瞬间增加了不少,博主最先想到的方法是用中序遍历将所有节点值存入到一个一维数组中,由于二分搜索树的性质,这个一维数组是有序的,然后再在有序数组中需要和目标值最近的k个值就简单的多,参见代码如下:
解法一:
class Solution {
public:
vector<int> closestKValues(TreeNode* root, double target, int k) {
vector<int> res, v;
inorder(root, v);
int idx = ;
double diff = numeric_limits<double>::max();
for (int i = ; i < v.size(); ++i) {
if (diff >= abs(target - v[i])) {
diff = abs(target - v[i]);
idx = i;
}
}
int left = idx - , right = idx + ;
for (int i = ; i < k; ++i) {
res.push_back(v[idx]);
if (left >= && right < v.size()) {
if (abs(v[left] - target) > abs(v[right] - target)) {
idx = right;
++right;
} else {
idx = left;
--left;
}
} else if (left >= ) {
idx = left;
--left;
} else if (right < v.size()) {
idx = right;
++right;
}
}
return res;
}
void inorder(TreeNode *root, vector<int> &v) {
if (!root) return;
inorder(root->left, v);
v.push_back(root->val);
inorder(root->right, v);
}
};
还有一种解法是直接在中序遍历的过程中完成比较,当遍历到一个节点时,如果此时结果数组不到k个,直接将此节点值加入结果 res 中,如果该节点值和目标值的差值的绝对值小于结果 res 的首元素和目标值差值的绝对值,说明当前值更靠近目标值,则将首元素删除,末尾加上当前节点值,反之的话说明当前值比结果 res 中所有的值都更偏离目标值,由于中序遍历的特性,之后的值会更加的遍历,所以此时直接返回最终结果即可,参见代码如下:
解法二:
class Solution {
public:
vector<int> closestKValues(TreeNode* root, double target, int k) {
vector<int> res;
inorder(root, target, k, res);
return res;
}
void inorder(TreeNode *root, double target, int k, vector<int> &res) {
if (!root) return;
inorder(root->left, target, k, res);
if (res.size() < k) res.push_back(root->val);
else if (abs(root->val - target) < abs(res[] - target)) {
res.erase(res.begin());
res.push_back(root->val);
} else return;
inorder(root->right, target, k, res);
}
};
下面这种方法是上面那种方法的迭代写法,原理一模一样,参见代码如下:
解法三:
class Solution {
public:
vector<int> closestKValues(TreeNode* root, double target, int k) {
vector<int> res;
stack<TreeNode*> s;
TreeNode *p = root;
while (p || !s.empty()) {
while (p) {
s.push(p);
p = p->left;
}
p = s.top(); s.pop();
if (res.size() < k) res.push_back(p->val);
else if (abs(p->val - target) < abs(res[] - target)) {
res.erase(res.begin());
res.push_back(p->val);
} else break;
p = p->right;
}
return res;
}
};
在来看一种利用最大堆来解题的方法,堆里保存的一个差值 diff 和节点值的 pair,中序遍历二叉树(也可以用其他遍历方法),然后对于每个节点值都计算一下和目标值之差的绝对值,由于最大堆的性质,diff 大的自动拍到最前面,维护k个 pair,如果超过了k个,就把堆前面大的 pair 删掉,最后留下的k个 pair,将 pair 中的节点值取出存入结果 res 中返回即可,参见代码如下:
解法四:
class Solution {
public:
vector<int> closestKValues(TreeNode* root, double target, int k) {
vector<int> res;
priority_queue<pair<double, int>> q;
inorder(root, target, k, q);
while (!q.empty()) {
res.push_back(q.top().second);
q.pop();
}
return res;
}
void inorder(TreeNode *root, double target, int k, priority_queue<pair<double, int>> &q) {
if (!root) return;
inorder(root->left, target, k, q);
q.push({abs(root->val - target), root->val});
if (q.size() > k) q.pop();
inorder(root->right, target, k, q);
}
};
下面的这种方法用了两个栈,pre 和 suc,其中 pre 存小于目标值的数,suc 存大于目标值的数,开始初始化 pre 和 suc 的时候,要分别将最接近目标值的稍小值和稍大值压入 pre 和 suc,然后循环k次,每次比较 pre 和 suc 的栈顶元素,看谁更接近目标值,将其存入结果 res 中,然后更新取出元素的栈,依次类推直至取完k个数返回即可,参见代码如下:
解法五:
class Solution {
public:
vector<int> closestKValues(TreeNode* root, double target, int k) {
vector<int> res;
stack<TreeNode*> pre, suc;
while (root) {
if (root->val <= target) {
pre.push(root);
root = root->right;
} else {
suc.push(root);
root = root->left;
}
}
while (k-- > ) {
if (suc.empty() || !pre.empty() && target - pre.top()->val < suc.top()->val - target) {
res.push_back(pre.top()->val);
getPredecessor(pre);
} else {
res.push_back(suc.top()->val);
getSuccessor(suc);
}
}
return res;
}
void getPredecessor(stack<TreeNode*> &pre) {
TreeNode *t = pre.top(); pre.pop();
if (t->left) {
pre.push(t->left);
while (pre.top()->right) pre.push(pre.top()->right);
}
}
void getSuccessor(stack<TreeNode*> &suc) {
TreeNode *t = suc.top(); suc.pop();
if (t->right) {
suc.push(t->right);
while (suc.top()->left) suc.push(suc.top()->left);
}
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/272
类似题目:
Closest Binary Search Tree Value
参考资料:
https://leetcode.com/problems/closest-binary-search-tree-value-ii/
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 272. Closest Binary Search Tree Value II 最近的二分搜索树的值之二的更多相关文章
- [LeetCode] Closest Binary Search Tree Value II 最近的二分搜索树的值之二
Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...
- [LeetCode] 272. Closest Binary Search Tree Value II 最近的二叉搜索树的值 II
Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...
- [LeetCode#272] Closest Binary Search Tree Value II
Problem: Given a non-empty binary search tree and a target value, find k values in the BST that are ...
- [leetcode]272. Closest Binary Search Tree Value II二叉搜索树中最近的值2
Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...
- 272. Closest Binary Search Tree Value II
题目: Given a non-empty binary search tree and a target value, find k values in the BST that are close ...
- LC 272. Closest Binary Search Tree Value II 【lock,hard】
Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...
- [Locked] Closest Binary Search Tree Value & Closest Binary Search Tree Value II
Closest Binary Search Tree Value Given a non-empty binary search tree and a target value, find the ...
- LeetCode Closest Binary Search Tree Value II
原题链接在这里:https://leetcode.com/problems/closest-binary-search-tree-value-ii/ 题目: Given a non-empty bin ...
- [Swift]LeetCode272. 最近的二分搜索树的值 II $ Closest Binary Search Tree Value II
Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...
随机推荐
- 【前端知识体系-JS相关】对移动端和Hybrid开发的理解?
1.hybrid是什么,为何使用hybrid呢? 概念: hybrid就是前端和客户端的混合开发 需要前端开发人员和客户端开发人员配合完成 某些环节也可能会涉及到server端 大前端:网页.APP. ...
- VSFTP日志文件详解
开启FTP服务器记录上传下载的情况,如果启用该选项,系统将会维护记录服务器上传和下载情况的日志文件.默认情况下,该日志文件为 /var/log/vsftpd.log # This depends on ...
- CentOS安装etcd和flannel实现Docker跨物理机通信
1.安装etcd yum install etcd systemctl stop etcd systemctl start etcd systemctl status etcd systemctl e ...
- SQL 除去数字中多于的0
/* 除掉多于的0 */ CREATE FUNCTION [dbo].[fn_ClearZero] ( ) ) ) AS BEGIN ); IF (@inValue = '') SET @return ...
- Eureka获取服务列表源码解析
在之前的文章:EurekaClient自动装配及启动流程解析中,我们提到了在类DiscoveryClient的构造方法中存在一个刷新线程和从服务端拉取注册信息的操作 这两个就是eureka获取服务列表 ...
- mysql判断是否包含某个字符的方法
mysql判断是否包含某个字符的方法用locate 是最快的,like 最慢.position一般实战例子:select * from historydatawhere locate('0',open ...
- nodejs块级作用域
现在让我们了解3个关键字var.let.const,的特性和使用方法. var JavaScript中,我们通常说的作用域是函数作用域,使用var声明的变量,无论是在代码的哪个地方声明的,都会提升到当 ...
- springBoot实现发送QQ邮件
一.导依赖 <!-- mail依赖--> <dependency> <groupId>org.springframework.boot</groupId> ...
- maven 学习---Maven依赖机制
在 Maven 依赖机制的帮助下自动下载所有必需的依赖库,并保持版本升级. 案例分析 让我们看一个案例研究,以了解它是如何工作的.假设你想使用 Log4j 作为项目的日志.这里你要做什么? 1.在传统 ...
- DDL创建数据库,表以及约束(极客时间学习笔记)
DDL DDL是DBMS的核心组件,是SQL的重要组成部分. DDL的正确性和稳定性是整个SQL发型的重要基础. DDL的基础语法及设计工具 DDL的英文是Data Definition Langua ...