Bzoj 4517: [Sdoi2016]排列计数(排列组合)
4517: [Sdoi2016]排列计数
Time Limit: 60 Sec Memory Limit: 128 MB
Description
求有多少种长度为 n 的序列 A,满足以下条件:
1 ~ n 这 n 个数在序列中各出现了一次
若第 i 个数 A[i] 的值为 i,则称 i 是稳定的。序列恰好有 m 个数是稳定的
满足条件的序列可能很多,序列数对 10^9+7 取模。
Input
第一行一个数 T,表示有 T 组数据。
接下来 T 行,每行两个整数 n、m。
T=500000,n≤1000000,m≤1000000
Output
输出 T 行,每行一个数,表示求出的序列数
Sample Input
5
1 0
1 1
5 2
100 50
10000 5000
Sample Output
0
1
20
578028887
60695423
HINT
Source
鸣谢Menci上传
/*
做法和题目一样.
简单的组合数学题.
答案=C(n,m)*F[n-m].
F[i]表示i个数的错排个数.
如果忘了公式可以用容斥原理推一发....
*/
#include<iostream>
#include<cstdio>
#define MAXN 1000001
#define LL long long
#define mod 1000000007
using namespace std;
LL n,m,ans,f[MAXN],M[MAXN];
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void pre()
{
f[0]=1,f[1]=0,f[2]=1;
for(int i=3;i<=MAXN-1;i++) f[i]=(i-1)*(f[i-1]+f[i-2])%mod;
M[0]=1;
for(int i=1;i<=MAXN-1;i++) M[i]=M[i-1]*i%mod;
}
LL mi(LL a,int b)
{
LL tot=1;
while(b)
{
if(b&1) tot=tot*a%mod;
a=a*a%mod;
b>>=1;
}
return tot;
}
void slove()
{
ans=M[n]*mi(M[m],mod-2)%mod*mi(M[n-m],mod-2)%mod*f[n-m]%mod;
printf("%lld\n",ans);
}
int main()
{
int t;
t=read();pre();
while(t--)
{
n=read(),m=read();
slove();
}
return 0;
}
Bzoj 4517: [Sdoi2016]排列计数(排列组合)的更多相关文章
- BZOJ 4517: [Sdoi2016]排列计数
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 911 Solved: 566[Submit][Status ...
- 数学(错排):BZOJ 4517: [Sdoi2016]排列计数
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 693 Solved: 434[Submit][Status ...
- BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]
4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...
- BZOJ 4517: [Sdoi2016]排列计数 错排公式
4517: [Sdoi2016]排列计数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4517 Description 求有多少种长度为 ...
- BZOJ 4517: [Sdoi2016]排列计数 错排+逆元
4517: [Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i, ...
- BZOJ 4517: [Sdoi2016]排列计数 错排 + 组合
从 $n$ 个数中选 $m$ 个不错排,那就是说 $n-m$ 个数是错排的. 用组合数乘一下就好了. Code: #include <cstdio> #include <algori ...
- BZOJ.4517.[SDOI2016]排列计数(错位排列 逆元)
题目链接 错位排列\(D_n=(n-1)*(D_{n-1}+D_{n-2})\),表示\(n\)个数都不在其下标位置上的排列数. 那么题目要求的就是\(C_n^m*D_{n-m}\). 阶乘分母部分的 ...
- BZOJ 4517: [Sdoi2016]排列计数(组合数学)
题面 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...
- bzoj 4517: [Sdoi2016]排列计数【容斥原理+组合数学】
第一个一眼就A的容斥题! 这个显然是容斥的经典问题------错排,首先考虑没有固定的情况,设\( D_n \)为\( n \)个数字的错排方案数. \[ D_n=n!-\sum_{t=1}^{n}( ...
随机推荐
- c#语法复习总结(1)-浅谈c#.net
出来工作两年,发现自己进步太小了,工作能力是不能混的,想先从基础知识好好复习一下,再深入的学习一些高级框架和先进的理念.找回了博客园的密码账号,好好学习和总结.先从数据类型总结一下,无非就是值类型,引 ...
- Neo私钥到地址
基础名词 Neo是个区块链工程,地址,公钥,私钥,地址脚本,base58,sha256,ripemd160,ECCsa,secp256k1,secp25r1这些词都是区块链技术相关的,或是新东西或者有 ...
- Elasticsearch DSL 常用语法介绍
课程环境 CentOS 7.3 x64 JDK 版本:1.8(最低要求),主推:JDK 1.8.0_121 Elasticsearch 版本:5.2.0 相关软件包百度云下载地址(密码:0yzd):h ...
- kaishi
https://zjc.wtc.edu.cn/zs/2019/0623/c2937a54869/page.htm https://zjc.wtc.edu.cn/zs/2019/0614/c593a54 ...
- spark任务运行完成后在driver端的处理逻辑
回顾 上一篇,我们分析了了任务在executor端的运行流程,任务运行结束后,在Executor.launchTask方法最后,通过调用execBackend.statusUpdate方法将任务结果以 ...
- 更多企业选择MES系统?这一款功能竟如此强大
很多制造业企业采用MES系统对制造生产的所有组成部分如订单.加工.质量.物料管理等进行集成,以实现产品生产的全过程管理,满足生产控制的需求,最终实现车间制造管理的信息化. MES系统不仅可以帮助企业提 ...
- spec开发思路以及理解
一.spec说明 描述:编写SEPC采用创联公司自主开发的CIT语言,它是一种过程化的.类似数据库编码的语言.SPEC中除了关键字外提倡使用中文. 理解:可以理解为业务逻辑层.链接前台页面和后台数据库 ...
- Java开发环境之Tomcat
查看更多Java开发环境配置,请点击<Java开发环境配置大全> 壹章:Tomcat安装教程 1)去官网下载安装包 http://tomcat.apache.org/ 建议下载压缩包(zi ...
- Git拉取Gitlab上的代码时,报128的解决方法
今天拉取gitlab上的代码时出现错误,一直返回128 首先我们确定我们在存储库上有没有权限,然后我就去项目中的 Members上看是否有权限,然后发现也是有的. 然后克隆的时候发现输入一万遍密码都还 ...
- JVM 整体流程介绍
一. JVM自身的物理结构 从图中可以看出 JVM 的主要组成部分 ClassLoader(类加载器),Runtime Data Area(运行时数据区,内存分区),Execution Engine( ...