4517: [Sdoi2016]排列计数

Time Limit: 60 Sec Memory Limit: 128 MB

Description

求有多少种长度为 n 的序列 A,满足以下条件:

1 ~ n 这 n 个数在序列中各出现了一次

若第 i 个数 A[i] 的值为 i,则称 i 是稳定的。序列恰好有 m 个数是稳定的

满足条件的序列可能很多,序列数对 10^9+7 取模。

Input

第一行一个数 T,表示有 T 组数据。

接下来 T 行,每行两个整数 n、m。

T=500000,n≤1000000,m≤1000000

Output

输出 T 行,每行一个数,表示求出的序列数

Sample Input

5

1 0

1 1

5 2

100 50

10000 5000

Sample Output

0

1

20

578028887

60695423

HINT

Source

鸣谢Menci上传

/*
做法和题目一样.
简单的组合数学题.
答案=C(n,m)*F[n-m].
F[i]表示i个数的错排个数.
如果忘了公式可以用容斥原理推一发....
*/
#include<iostream>
#include<cstdio>
#define MAXN 1000001
#define LL long long
#define mod 1000000007
using namespace std;
LL n,m,ans,f[MAXN],M[MAXN];
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void pre()
{
f[0]=1,f[1]=0,f[2]=1;
for(int i=3;i<=MAXN-1;i++) f[i]=(i-1)*(f[i-1]+f[i-2])%mod;
M[0]=1;
for(int i=1;i<=MAXN-1;i++) M[i]=M[i-1]*i%mod;
}
LL mi(LL a,int b)
{
LL tot=1;
while(b)
{
if(b&1) tot=tot*a%mod;
a=a*a%mod;
b>>=1;
}
return tot;
}
void slove()
{
ans=M[n]*mi(M[m],mod-2)%mod*mi(M[n-m],mod-2)%mod*f[n-m]%mod;
printf("%lld\n",ans);
}
int main()
{
int t;
t=read();pre();
while(t--)
{
n=read(),m=read();
slove();
}
return 0;
}

Bzoj 4517: [Sdoi2016]排列计数(排列组合)的更多相关文章

  1. BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 911  Solved: 566[Submit][Status ...

  2. 数学(错排):BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 693  Solved: 434[Submit][Status ...

  3. BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]

    4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...

  4. BZOJ 4517: [Sdoi2016]排列计数 错排公式

    4517: [Sdoi2016]排列计数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4517 Description 求有多少种长度为 ...

  5. BZOJ 4517: [Sdoi2016]排列计数 错排+逆元

    4517: [Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i, ...

  6. BZOJ 4517: [Sdoi2016]排列计数 错排 + 组合

    从 $n$ 个数中选 $m$ 个不错排,那就是说 $n-m$ 个数是错排的. 用组合数乘一下就好了. Code: #include <cstdio> #include <algori ...

  7. BZOJ.4517.[SDOI2016]排列计数(错位排列 逆元)

    题目链接 错位排列\(D_n=(n-1)*(D_{n-1}+D_{n-2})\),表示\(n\)个数都不在其下标位置上的排列数. 那么题目要求的就是\(C_n^m*D_{n-m}\). 阶乘分母部分的 ...

  8. BZOJ 4517: [Sdoi2016]排列计数(组合数学)

    题面 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

  9. bzoj 4517: [Sdoi2016]排列计数【容斥原理+组合数学】

    第一个一眼就A的容斥题! 这个显然是容斥的经典问题------错排,首先考虑没有固定的情况,设\( D_n \)为\( n \)个数字的错排方案数. \[ D_n=n!-\sum_{t=1}^{n}( ...

随机推荐

  1. 系统压测结果对比:tomcat/thinkphp/swoole/php-fpm/apache

    [测试所用服务器8核,16G内存]压测接口:很简单,从一张表里根据主键随机查询出一条数据[数据库服务器和WEB服务器分开的].表数据量大概:910000+条. 这个测试结果很有趣:tp5.0和3.2性 ...

  2. C# 手写将对象转换为Json方法

    一.需求场景 (1)不能用JavaScriptSerializer.DataContractJsonSerializer.Newtonsoft.Json这些写好的方法,需要自己写方法. (2)转化的类 ...

  3. 类例程_c#战斗程序(窗体版)

    战士类代码: class Fight { String name; int attack, speed, crit, armor;// 生命.攻击力,攻速,暴击,护甲 public int life; ...

  4. java开发中,一些小的JS应用

    js中打开一个新窗口的方法: 1.window.location.href=“url” 2.jbox.win(); 3.window.open(); js无任何提示的关闭弹出的页面: window.o ...

  5. HTML5 表单新增内容

    一.H5 新增控件 1.datalist 元素 datalist 标签定义选项列表,请与 input 元素配合使用该元素.可为输入框提供一个可选的列表,可以直接选择列表项,也可以不选择列表中的项,自行 ...

  6. 原油PETROLAEUM英语PETROLAEUM石油

    petrolaeum (uncountable) Archaic spelling of petroleum petroleum See also: Petroleum Contents [hide] ...

  7. [TensorFlow 2.0] Keras 简介

    Keras 是一个用于构建和训练深度学习模型的高阶 API.它可用于快速设计原型.高级研究和生产. keras的3个优点: 方便用户使用.模块化和可组合.易于扩展 简单点说就是,简单.好用.快(构建) ...

  8. MES应用案例 | 天博集团成功完成数字化转型

    受到智能制造观念和技术的巨大且快速的影响,使得工业特别是汽车行业必须以最快速度赶上这场企业数字化转型的浪潮,唯有实现企业转型升级才能在这场速度战中占得先机.当然关于企业的转型升级,最为重要的是需要打造 ...

  9. java接口中的成员方法和成员变量

    接口的含义理解:接口可以理解成统一的"协议",而接口中的属性也属于协议中的内容;但是接口的属性都是公共的,静态的,最终的 接口的成员特点:A:成员变量 只能是常量.默认修饰符 pu ...

  10. Python的矩阵传播机制&矩阵运算

    Python的矩阵传播机制(Broadcasting) 最近在学习神经网络.我们知道在深度学习中经常要操作各种矩阵(matrix).回想一下,我们在操作数组(list)的时候,经常习惯于用for循环( ...