一、以Wordcount为例来分析

1、Wordcount

val lines = sc.textFile()
val words = lines.flatMap(line => line.split(" "))
val pairs = words.map(word => (word, 1))
val counts = pairs.reduceByKey(_ + _)
counts.foreach(count => println(count._1 + ": " + count._2))

2、源码分析

###org.apache.spark/SparkContext.scala
###textFile() /**
* 首先,hadoopFile()方法的调用,会创建一个HadoopRDD,其中的元素,其实是(key,value)pais
* key是hdfs或文本文件的每一行的offset,value是文本行
* 然后对HadoopRDD调用map()方法,会剔除key,只保留value,然后会获得一个MapPartitionRDD
* MapPartitionRDD内部的元素,其实就是一行一行的文本行
* @param path
* @param minPartitions
* @return
*/
def textFile(path: String, minPartitions: Int = defaultMinPartitions): RDD[String] = {
assertNotStopped()
hadoopFile(path, classOf[TextInputFormat], classOf[LongWritable], classOf[Text],
minPartitions).map( pair => pair._2.toString).setName(path)
} ###org.apache.spark.rdd/RDD.scala def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U] = {
val cleanF = sc.clean(f)
new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.flatMap(cleanF))
} def map[U: ClassTag](f: T => U): RDD[U] = {
val cleanF = sc.clean(f)
new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.map(cleanF))
} 其实RDD里是没有reduceByKey的,因此对RDD调用reduceByKey()方法的时候,会触发scala的隐式转换;此时就会在作用域内,寻找隐式转换,
会在RDD中找到rddToPairRDDFunctions()隐式转换,然后将RDD转换为PairRDDFunctions。 implicit def rddToPairRDDFunctions[K, V](rdd: RDD[(K, V)])
(implicit kt: ClassTag[K], vt: ClassTag[V], ord: Ordering[K] = null): PairRDDFunctions[K, V] = {
new PairRDDFunctions(rdd)
} 接着会调用PairRDDFunctions中的reduceByKey()方法; def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)] = {
combineByKey[V]((v: V) => v, func, func, partitioner)
} ###org.apache.spark.rdd/RDD.scala def foreach(f: T => Unit) {
val cleanF = sc.clean(f)
sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))
} foreach调用了runJob方法,一步步追踪runJob方法,首先调用SparkContext的runJob: def runJob[T, U: ClassTag](rdd: RDD[T], func: Iterator[T] => U): Array[U] = {
runJob(rdd, func, 0 until rdd.partitions.size, false)
} … 最后:
def runJob[T, U: ClassTag](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
allowLocal: Boolean,
resultHandler: (Int, U) => Unit) {
if (stopped) {
throw new IllegalStateException("SparkContext has been shutdown")
}
val callSite = getCallSite
val cleanedFunc = clean(func)
logInfo("Starting job: " + callSite.shortForm)
if (conf.getBoolean("spark.logLineage", false)) {
logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
}
// 调用SparkContext,之前初始化时创建的dagScheduler的runJob()方法
dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, allowLocal,
resultHandler, localProperties.get)
progressBar.foreach(_.finishAll())
rdd.doCheckpoint()
}

16、job触发流程原理剖析与源码分析的更多相关文章

  1. 65、Spark Streaming:数据接收原理剖析与源码分析

    一.数据接收原理 二.源码分析 入口包org.apache.spark.streaming.receiver下ReceiverSupervisorImpl类的onStart()方法 ### overr ...

  2. 66、Spark Streaming:数据处理原理剖析与源码分析(block与batch关系透彻解析)

    一.数据处理原理剖析 每隔我们设置的batch interval 的time,就去找ReceiverTracker,将其中的,从上次划分batch的时间,到目前为止的这个batch interval ...

  3. 18、TaskScheduler原理剖析与源码分析

    一.源码分析 ###入口 ###org.apache.spark.scheduler/DAGScheduler.scala // 最后,针对stage的task,创建TaskSet对象,调用taskS ...

  4. 64、Spark Streaming:StreamingContext初始化与Receiver启动原理剖析与源码分析

    一.StreamingContext源码分析 ###入口 org.apache.spark.streaming/StreamingContext.scala /** * 在创建和完成StreamCon ...

  5. 23、CacheManager原理剖析与源码分析

    一.图解 二.源码分析 ###org.apache.spark.rdd/RDD.scalal ###入口 final def iterator(split: Partition, context: T ...

  6. 22、BlockManager原理剖析与源码分析

    一.原理 1.图解 Driver上,有BlockManagerMaster,它的功能,就是负责对各个节点上的BlockManager内部管理的数据的元数据进行维护, 比如Block的增删改等操作,都会 ...

  7. 21、Shuffle原理剖析与源码分析

    一.普通shuffle原理 1.图解 假设有一个节点上面运行了4个 ShuffleMapTask,然后这个节点上只有2个 cpu core.假如有另外一台节点,上面也运行了4个ResultTask,现 ...

  8. 20、Task原理剖析与源码分析

    一.Task原理 1.图解 二.源码分析 1. ###org.apache.spark.executor/Executor.scala /** * 从TaskRunner开始,来看Task的运行的工作 ...

  9. 19、Executor原理剖析与源码分析

    一.原理图解 二.源码分析 1.Executor注册机制 worker中为Application启动的executor,实际上是启动了这个CoarseGrainedExecutorBackend进程: ...

随机推荐

  1. SQL Server 索引优化 ——索引缺失

    本文我们将重点给出动态视图法发现数据库中缺失的索引.对于索引的调整和新建将不在本文阐述范围,后续将陆续分享相关经验. sys.dm_db_missing_index_details 缺失索引明细,包括 ...

  2. 斐波那契数列(递归)c#

    我郑重宣布 我爱递归 我自己编程几乎都没用过递归 我看到这个题的时候虽然想到了用递归 但是我个脑残一直在想怎么设置动态数组 明明纯递归更简单 我也是可无语 反正我爱上递归了 爱惹  无法自拔

  3. System.Data.Entity.Core.EntityException: 可能由于暂时性失败引发了异常。如果您在连接到 SQL Azure 数据库,请考虑使用 SqlAzureExecutionStrategy。

    代码异常描述  ************** 异常文本 **************System.Data.Entity.Core.EntityException: 可能由于暂时性失败引发了异常.如果 ...

  4. bat 设置多个静态ip

    @echo off REM 本地连接名称 set NetName="本地连接 2" REM 默认IP netsh interface ipv4 set address name=% ...

  5. JQ分页的使用

    <script src="../js/pageMe.js"></script> <script src="../js/comjq.js&qu ...

  6. PHP 中使用ajax时一些常见错误总结整理

    这篇文章主要介绍了PHP 中使用ajax时一些常见错误总结整理的相关资料,需要的朋友可以参考下 PHP作为后端时,前端js使用ajax技术进行相互信息传送时,经常会出错误,对于新手来说有些手足无措.总 ...

  7. net webapi jwt验证授权

    参考文章:https://blog.csdn.net/liwan09/article/details/83820651

  8. kubernetes 配置网络插件 flannel

    概述 在学习docker时知道docker有四种常用的网络模型 bridge:桥接式网络 joined:联盟式网络,共享使用另外一个容器的网络名称空间 opened:容器直接共享使用宿主机的网络名称空 ...

  9. vue_插槽的理解和使用

    对于插槽的概念和使用,这是vue的一个难点,这需要我们静下心来,慢慢研究.以下是我这两天通过官网和其他资料的学习和使用总结出来的笔记,如有错误或者有不同见解的,欢迎留言,一起学习. 什么是插槽? 插槽 ...

  10. 微信支付接口--支付成功的回调--超详细Demo

    如果本文对你有用,请爱心点个赞,提高排名,帮助更多的人.谢谢大家!❤ 如果解决不了,可以在文末进群交流. 如果对你有帮助的话麻烦点个[推荐]~最好还可以follow一下我的GitHub~感谢观看! 写 ...