【集合框架】JDK1.8源码分析之LinkedList(七)
一、前言
在分析了ArrayList了之后,紧接着必须要分析它的同胞兄弟:LinkedList,LinkedList与ArrayList在底层的实现上有所不同,其实,只要我们有数据结构的基础,在分析源码的时候就会很简单,下面进入正题,LinkedList源码分析。
二、LinkedList数据结构
还是老规矩,先抓住LinkedList的核心部分:数据结构,其数据结构如下
说明:如上图所示,LinkedList底层使用的双向链表结构,有一个头结点和一个尾结点,双向链表意味着我们可以从头开始正向遍历,或者是从尾开始逆向遍历,并且可以针对头部和尾部进行相应的操作。
三、LinkedList源码分析
3.1 类的继承关系
public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable
说明:LinkedList的类继承结构很有意思,我们着重要看是Deque接口,Deque接口表示是一个双端队列,那么也意味着LinkedList是双端队列的一种实现,所以,基于双端队列的操作在LinkedList中全部有效。
3.2 类的内部类
private static class Node<E> {
E item; // 数据域
Node<E> next; // 后继
Node<E> prev; // 前驱 // 构造函数,赋值前驱后继
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
说明:内部类Node就是实际的结点,用于存放实际元素的地方。
3.3 类的属性
public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
// 实际元素个数
transient int size = 0;
// 头结点
transient Node<E> first;
// 尾结点
transient Node<E> last;
}
说明:LinkedList的属性非常简单,一个头结点、一个尾结点、一个表示链表中实际元素个数的变量。注意,头结点、尾结点都有transient关键字修饰,这也意味着在序列化时该域是不会序列化的。
3.4 类的构造函数
1. LinkedList()型构造函数
public LinkedList() {
}
2. LinkedList(Collection<? extends E>)型构造函数
public LinkedList(Collection<? extends E> c) {
// 调用无参构造函数
this();
// 添加集合中所有的元素
addAll(c);
}
说明:会调用无参构造函数,并且会把集合中所有的元素添加到LinkedList中。
3.5 核心函数分析
1. add函数
public boolean add(E e) {
// 添加到末尾
linkLast(e);
return true;
}
说明:add函数用于向LinkedList中添加一个元素,并且添加到链表尾部。具体添加到尾部的逻辑是由linkLast函数完成的。
void linkLast(E e) {
// 保存尾结点,l为final类型,不可更改
final Node<E> l = last;
// 新生成结点的前驱为l,后继为null
final Node<E> newNode = new Node<>(l, e, null);
// 重新赋值尾结点
last = newNode;
if (l == null) // 尾结点为空
first = newNode; // 赋值头结点
else // 尾结点不为空
l.next = newNode; // 尾结点的后继为新生成的结点
// 大小加1
size++;
// 结构性修改加1
modCount++;
}
说明:对于添加一个元素至链表中会调用add方法 -> linkLast方法。
对于添加元素的情况我们使用如下示例进行说明
示例一代码如下(只展示了核心代码)
List<Integer> lists = new LinkedList<Integer>();
lists.add(5);
lists.add(6);
说明:首先调用无参构造函数,之后添加元素5,之后再添加元素6。具体的示意图如下:
说明:上图的表明了在执行每一条语句后,链表对应的状态。
2. addAll函数
addAll有两个重载函数,addAll(Collection<? extends E>)型和addAll(int, Collection<? extends E>)型,我们平时习惯调用的addAll(Collection<? extends E>)型会转化为addAll(int, Collection<? extends E>)型,所以我们着重分析此函数即可。
// 添加一个集合
public boolean addAll(int index, Collection<? extends E> c) {
// 检查插入的的位置是否合法
checkPositionIndex(index);
// 将集合转化为数组
Object[] a = c.toArray();
// 保存集合大小
int numNew = a.length;
if (numNew == 0) // 集合为空,直接返回
return false; Node<E> pred, succ; // 前驱,后继
if (index == size) { // 如果插入位置为链表末尾,则后继为null,前驱为尾结点
succ = null;
pred = last;
} else { // 插入位置为其他某个位置
succ = node(index); // 寻找到该结点
pred = succ.prev; // 保存该结点的前驱
} for (Object o : a) { // 遍历数组
@SuppressWarnings("unchecked") E e = (E) o; // 向下转型
// 生成新结点
Node<E> newNode = new Node<>(pred, e, null);
if (pred == null) // 表示在第一个元素之前插入(索引为0的结点)
first = newNode;
else
pred.next = newNode;
pred = newNode;
} if (succ == null) { // 表示在最后一个元素之后插入
last = pred;
} else {
pred.next = succ;
succ.prev = pred;
}
// 修改实际元素个数
size += numNew;
// 结构性修改加1
modCount++;
return true;
}
说明:参数中的index表示在索引下标为index的结点(实际上是第index + 1个结点)的前面插入。在addAll函数中,addAll函数中还会调用到node函数,get函数也会调用到node函数,此函数是根据索引下标找到该结点并返回,具体代码如下
Node<E> node(int index) {
// 判断插入的位置在链表前半段或者是后半段
if (index < (size >> 1)) { // 插入位置在前半段
Node<E> x = first;
for (int i = 0; i < index; i++) // 从头结点开始正向遍历
x = x.next;
return x; // 返回该结点
} else { // 插入位置在后半段
Node<E> x = last;
for (int i = size - 1; i > index; i--) // 从尾结点开始反向遍历
x = x.prev;
return x; // 返回该结点
}
}
说明:在根据索引查找结点时,会有一个小优化,结点在前半段则从头开始遍历,在后半段则从尾开始遍历,这样就保证了只需要遍历最多一半结点就可以找到指定索引的结点。
下面通过示例来更深入了解调用addAll函数后的链表状态。
List<Integer> lists = new LinkedList<Integer>();
lists.add(5);
lists.addAll(0, Arrays.asList(2, 3, 4, 5));
上述代码内部的链表结构如下:
3. unlink函数
在调用remove移除结点时,会调用到unlink函数,unlink函数具体如下:
E unlink(Node<E> x) {
// 保存结点的元素
final E element = x.item;
// 保存x的后继
final Node<E> next = x.next;
// 保存x的前驱
final Node<E> prev = x.prev; if (prev == null) { // 前驱为空,表示删除的结点为头结点
first = next; // 重新赋值头结点
} else { // 删除的结点不为头结点
prev.next = next; // 赋值前驱结点的后继
x.prev = null; // 结点的前驱为空,切断结点的前驱指针
} if (next == null) { // 后继为空,表示删除的结点为尾结点
last = prev; // 重新赋值尾结点
} else { // 删除的结点不为尾结点
next.prev = prev; // 赋值后继结点的前驱
x.next = null; // 结点的后继为空,切断结点的后继指针
} x.item = null; // 结点元素赋值为空
// 减少元素实际个数
size--;
// 结构性修改加1
modCount++;
// 返回结点的旧元素
return element;
}
说明:将指定的结点从链表中断开,不再累赘。
四、针对LinkedList的思考
1. 对addAll函数的思考
在addAll函数中,传入一个集合参数和插入位置,然后将集合转化为数组,然后再遍历数组,挨个添加数组的元素,但是问题来了,为什么要先转化为数组再进行遍历,而不是直接遍历集合呢?从效果上两者是完全等价的,都可以达到遍历的效果。关于为什么要转化为数组的问题,我的思考如下:1. 如果直接遍历集合的话,那么在遍历过程中需要插入元素,在堆上分配内存空间,修改指针域,这个过程中就会一直占用着这个集合,考虑正确同步的话,其他线程只能一直等待。2. 如果转化为数组,只需要遍历集合,而遍历集合过程中不需要额外的操作,所以占用的时间相对是较短的,这样就利于其他线程尽快的使用这个集合。说白了,就是有利于提高多线程访问该集合的效率,尽可能短时间的阻塞。
五、总结
分析完了LinkedList源码,其实很简单,值得注意的是LinkedList可以作为双端队列使用,这也是队列结构在Java中一种实现,当需要使用队列结构时,可以考虑LinkedList。谢谢各位园友观看~
【集合框架】JDK1.8源码分析之LinkedList(七)的更多相关文章
- 【集合框架】JDK1.8源码分析之HashMap(一) 转载
[集合框架]JDK1.8源码分析之HashMap(一) 一.前言 在分析jdk1.8后的HashMap源码时,发现网上好多分析都是基于之前的jdk,而Java8的HashMap对之前做了较大的优化 ...
- 【集合框架】JDK1.8源码分析之ArrayList详解(一)
[集合框架]JDK1.8源码分析之ArrayList详解(一) 一. 从ArrayList字表面推测 ArrayList类的命名是由Array和List单词组合而成,Array的中文意思是数组,Lis ...
- 【集合框架】JDK1.8源码分析之Collections && Arrays(十)
一.前言 整个集合框架的常用类我们已经分析完成了,但是还有两个工具类我们还没有进行分析.可以说,这两个工具类对于我们操作集合时相当有用,下面进行分析. 二.Collections源码分析 2.1 类的 ...
- 【集合框架】JDK1.8源码分析HashSet && LinkedHashSet(八)
一.前言 分析完了List的两个主要类之后,我们来分析Set接口下的类,HashSet和LinkedHashSet,其实,在分析完HashMap与LinkedHashMap之后,再来分析HashSet ...
- 集合之TreeSet(含JDK1.8源码分析)
一.前言 前面分析了Set接口下的hashSet和linkedHashSet,下面接着来看treeSet,treeSet的底层实现是基于treeMap的. 四个关注点在treeSet上的答案 二.tr ...
- 集合之LinkedHashSet(含JDK1.8源码分析)
一.前言 上篇已经分析了Set接口下HashSet,我们发现其操作都是基于hashMap的,接下来看LinkedHashSet,其底层实现都是基于linkedHashMap的. 二.linkedHas ...
- 集合之HashSet(含JDK1.8源码分析)
一.前言 我们已经分析了List接口下的ArrayList和LinkedList,以及Map接口下的HashMap.LinkedHashMap.TreeMap,接下来看的是Set接口下HashSet和 ...
- 【JUC】JDK1.8源码分析之ArrayBlockingQueue(三)
一.前言 在完成Map下的并发集合后,现在来分析ArrayBlockingQueue,ArrayBlockingQueue可以用作一个阻塞型队列,支持多任务并发操作,有了之前看源码的积累,再看Arra ...
- Java集合系列[4]----LinkedHashMap源码分析
这篇文章我们开始分析LinkedHashMap的源码,LinkedHashMap继承了HashMap,也就是说LinkedHashMap是在HashMap的基础上扩展而来的,因此在看LinkedHas ...
随机推荐
- UIWindow & UIWindowLevel
转自:http://www.cnblogs.com/smileEvday/archive/2012/03/27/2420362.html 一.UIWindow是一种特殊的UIView,通常在一个程序中 ...
- vue.js 的学习
官方网站(作者居然是中国人) http://vuejs.org/ Vuex中文手册 http://vuex.vuejs.org Vue-Router 手册 http://router.vuejs.or ...
- #IrrlichtEngine# Example1 HelloWorld
配置IDE环境来使用irrlicht引擎: (VS2012下)菜单栏项目 -> 项目属性窗口下 C/C++ -> 常规 -> 附加包含目录中添加irrlicnt引擎文件目录下incl ...
- ASP.NET MVC 多语言方案
前言: 好多年没写文章了,工作很忙,天天加班, 每天都相信不用多久,就会升职加薪,当上总经理,出任CEO,迎娶白富美,走上人生巅峰,想想还有点小激动~~~~ 直到后来发生了邮箱事件,我竟然忘了给邮箱密 ...
- 基于Entity Framework 6的框架Nido Framework
随着 Entity Framework 最新主版本 EF6 的推出,Microsoft 对象关系映射 (ORM) 工具达到了新的专业高度,与久负盛名的 .NET ORM 工具相比已不再是门外汉. EF ...
- [译]MVC网站教程(三):动态布局和站点管理
目录 1. 介绍 2. 软件环境 3. 在运行示例代码之前(源代码 + 示例登陆帐号) 4. 自定义操作结果和控制器扩展 1) OpenFileResult 2) ImageR ...
- Prim 最小生成树算法
Prim 算法是一种解决最小生成树问题(Minimum Spanning Tree)的算法.和 Kruskal 算法类似,Prim 算法的设计也是基于贪心算法(Greedy algorithm). P ...
- awk神器
序 产品经理(PM)过来找你要最近某某的数据,而你知道这些数据目前只能通过日志文件去分析,因为我们知道,我们不可能把所有数据都放入db中(这不科学啊!).每当有这样任务的时候,你就用php或j ...
- 《Entity Framework 6 Recipes》中文翻译系列 (19) -----第三章 查询之使用位操作和多属性连接(join)
翻译的初衷以及为什么选择<Entity Framework 6 Recipes>来学习,请看本系列开篇 3-16 过滤中使用位操作 问题 你想在查询的过滤条件中使用位操作. 解决方案 假 ...
- 拓展 Android 原生 CountDownTimer 倒计时
拓展 Android 原生 CountDownTimer 倒计时 [TOC] CountDownTimer 在系统的CountDownTimer上进行的修改,主要是拓展了功能,当然也保留了系统默认的模 ...