1079: [SCOI2008]着色方案

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2237  Solved: 1361
[Submit][Status][Discuss]

Description

  有n个木块排成一行,从左到右依次编号为1~n。你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块。
所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n。相邻两个木块涂相同色显得很难看,所以你希望统计任意两
个相邻木块颜色不同的着色方案。

Input

  第一行为一个正整数k,第二行包含k个整数c1, c2, ... , ck。

Output

  输出一个整数,即方案总数模1,000,000,007的结果。

Sample Input

3
1 2 3

Sample Output

10

HINT

100%的数据满足:1 <= k <= 15, 1 <= ci <= 5

  这道题挺有趣的,他将DP与记忆化搜索结合在了一起……
  我们做一个假设,假设ci都为1,那么这就是一道状压题了,但是ci<=5,虽然仍然不大,但是状压15位显然扑街。
  让我们回过头在看最基础的暴力,也就是我们去枚举每一位放的颜色,并将它传递给下一层dfs,如果我们分析一下的话我们会发现每一种剩下可涂数量相同的颜色都可以看作等价的,换句话说涂谁都行。那么,我们将状压的方式换一换,不对,不能叫状压了。改为ci剩余1 2 3 4 5 个的颜色有几种,上一个是谁,也就是f[15][15][15][15][15][7]。空间没问题,至于转移,我们利用dfs的思想,使用记忆化搜索,然后对于每一个f,假设当前状态为f[a][b][c][d][e][la]
  则若d!=0且la!=3那么f[a][b][c][d][e][la]+=f[a][b][c][d-1][e+1][2]*d。
  若la=3那么f[a][b][c][d][e][la]+=(d-1)*f[a][b][c][d-1][e+1][2]。
  其余同理。
  不得不说转移数组挺像一道概率DP“抵制克苏恩”的,可惜没有能够应用到这道题来啊。
 #include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#include <cmath>
#include <map>
using namespace std;
int n,t,a[],js[];
long long f[][][][][][],p=;
bool vi[][][][][][];
long long dfs(int a,int b,int c,int d,int e,int la)
{
     
    if(a==&&b==&&c==&&d==&&e==)return ;
    if(vi[a][b][c][d][e][la])return f[a][b][c][d][e][la];
    vi[a][b][c][d][e][la]=;
    if(a)f[a][b][c][d][e][la]+=a*dfs(a-,b+,c,d,e,),f[a][b][c][d][e][la]%=p;
    if(b)
    {
        if(b!=)f[a][b][c][d][e][la]+=(b-(la==))*dfs(a,b-,c+,d,e,);
        else if(la!=)f[a][b][c][d][e][la]+=dfs(a,b-,c+,d,e,);
        f[a][b][c][d][e][la]%=p;
    }
    if(c)
    {
        //cout<<a<<' '<<b<<' '<<c<<' '<<d<<' '<<e<<endl;
        if(c!=)f[a][b][c][d][e][la]+=(c-(la==))*dfs(a,b,c-,d+,e,);
        else if(la!=) f[a][b][c][d][e][la]+=dfs(a,b,c-,d+,e,);
        f[a][b][c][d][e][la]%=p;
    }
    if(d)
    {
         
        if(d!=)f[a][b][c][d][e][la]+=(d-(la==))*dfs(a,b,c,d-,e+,);
        else if(la!=)f[a][b][c][d][e][la]+=dfs(a,b,c,d-,e+,);
        f[a][b][c][d][e][la]%=p;
    }
    if(e)
    {
        if(e!=)f[a][b][c][d][e][la]+=(e-(la==))*dfs(a,b,c,d,e-,);
        else if(la!=)f[a][b][c][d][e][la]+=dfs(a,b,c,d,e-,);
        f[a][b][c][d][e][la]%=p;
    }
    return f[a][b][c][d][e][la];
}
int main()
{
    scanf("%d",&t);
    for(int i=;i<=t;i++)
    {
        scanf("%d",&a[i]);
        n+=a[i];
        js[a[i]]++;
    }
    long long ans=dfs(js[],js[],js[],js[],js[],);
    printf("%lld\n",ans);
    return ;
}

  顺便提一句,我之所以还要多开一个vi数组,是为了防止f模p之后为0的情况。

Bzoj 1079 着色方案 题解的更多相关文章

  1. [BZOJ]1079 着色方案(SCOI2008)

    相邻色块不同的着色方案,似乎这道题已经见过3个版本了. Description 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块.所有油漆刚好足够 ...

  2. bzoj 1079 着色方案

    题目: 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其 中第i 种颜色的油漆足够涂ci 个木块.所有油漆刚好足够涂满所有木块,即c1+c2+-+ck=n.相邻两个木块涂相同色显得 ...

  3. BZOJ 1079 着色方案(DP)

    如果把当前格子涂什么颜色当做转移的话,状态则是每个格子的颜色数还剩多少,以及上一步用了什么颜色,这样的状态量显然是5^15.不可取. 如果把当前格子涂颜色数还剩几个的颜色作为转移的话,状态则是每个格子 ...

  4. BZOJ 1079: [SCOI2008]着色方案 记忆化搜索

    1079: [SCOI2008]着色方案 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  5. BZOJ 1079: [SCOI2008]着色方案(巧妙的dp)

    BZOJ 1079: [SCOI2008]着色方案(巧妙的dp) 题意:有\(n\)个木块排成一行,从左到右依次编号为\(1\)~\(n\).你有\(k\)种颜色的油漆,其中第\(i\)种颜色的油漆足 ...

  6. [BZOJ 1079][SCOI 2008]着色方案

    1079: [SCOI2008]着色方案 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2237  Solved: 1361[Submit][Stat ...

  7. bzoj 1079: [SCOI2008]着色方案 DP

    1079: [SCOI2008]着色方案 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 803  Solved: 512[Submit][Status ...

  8. 【BZOJ】1079: [SCOI2008]着色方案(dp+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1079 只能想到5^15的做法...........................果然我太弱. 其实 ...

  9. 【BZOJ 1079】[SCOI2008]着色方案

    Description 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块.所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n.相邻两个木 ...

随机推荐

  1. WPF 控件 深度克隆

    原文:WPF 控件 深度克隆 http://social.msdn.microsoft.com/Forums/zh-SG/wpfzhchs/thread/e5c87129-966a-4d51-a934 ...

  2. QSS 盒子模型

    每个 Widget 所在的范围都是一个矩形区域(无规则窗口也是一个矩形,只是有的地方是透明的,看上去不是一个矩形),像是一个盒子一样.QSS 支持盒子模型(Box Model),和 CSS 的盒子模型 ...

  3. C# 委托参数方法实例

    /// <summary> /// 方法委托 /// </summary> /// <param name="dwEnrollNum">< ...

  4. C#最简单的文本加密

    #region AES加密 public static byte[] TextEncrypt(string content, string secretKey) { byte[] data = Enc ...

  5. Portal for ArcGIS 资源承载数据类型

    在Portal中数据主要分为两大类:Web内容与桌面内容.对于Web内容与桌面内容中的每个项目(item)又被具体分为maps,layers, styles, tools,applications,和 ...

  6. UWP-MSDN文档分类

    原文:UWP-MSDN文档分类 UWP学习目录整理 0x00 可以忽略的废话 10月6号靠着半听半猜和文字直播的补充看完了微软的秋季新品发布会,信仰充值成功,对UWP的开发十分感兴趣,打算后面找时间学 ...

  7. Rendering in Delphi using TCanvas (FMX)

    BY CRAIG CHAPMAN · PUBLISHED 2015-08-05 · UPDATED 2015-08-20   I have a customer with an application ...

  8. Dropbox是同步盘,Box.net是网盘(所以要学习Box)

    自从能无缝用Dropbox后,确实得瑟了很久,但只有可怜巴巴的2G空间,搞不出什么妖蛾子,dropbox的好用,世所共知.百度云盘2T的空间,我却不敢把重要的东西放在里面. 在还没有优盘的时候,我常常 ...

  9. QObject提供了QMetaObject元类信息(相当于RTTI和反射),信号与连接,父子关系,调试信息,属性,事件,继承关系,窗口类型,线程属性,时间器,对象名称,国际化

    元类信息(相当于RTTI和反射),信号与连接,父子关系,调试信息,属性,事件,继承关系,窗口类型,线程属性,时间器,对象名称,国际化其中元类又提供了:classInfo,className,构造函数, ...

  10. GetLastError()返回值列表(3259个错误列表)

    GetLastError()返回值列表: [0]-操作成功完成. [1]-功能错误. [2]-系统找不到指定的文件. [3]-系统找不到指定的路径. [4]-系统无法打开文件. [5]-拒绝访问. [ ...