题目描述

一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的。棍子可以被一台机器一个接一个地加工。机器处理一根棍子之前需要准备时间。准备时间是这样定义的:

第一根棍子的准备时间为1分钟;

如果刚处理完长度为L,宽度为W的棍子,那么如果下一个棍子长度为Li,宽度为Wi,并且满足L>=Li,W>=Wi,这个棍子就不需要准备时间,否则需要1分钟的准备时间;

计算处理完n根棍子所需要的最短准备时间。比如,你有5根棍子,长度和宽度分别为(4, 9),(5, 2),(2, 1),(3, 5),(1, 4),最短准备时间为2(按(4, 9)、(3, 5)、(1, 4)、(5, 2)、(2, 1)的次序进行加工)。

输入输出格式

输入格式:

第一行是一个整数n(n<=5000),第2行是2n个整数,分别是L1,W1,L2,w2,…,Ln,Wn。L和W的值均不超过10000,相邻两数之间用空格分开。

输出格式:

仅一行,一个整数,所需要的最短准备时间。

输入输出样例

输入样例#1:

5
4 9 5 2 2 1 3 5 1 4
输出样例#1:

2
解题思路:
先将长度排序,再依次寻找宽度不上升序列,将它们全部标记,最后寻找没有被标记的。
AC代码:
 #include<cstdio>
#include<algorithm>
using namespace std;
int n,kk,ans;
struct kkk {
int c,k;//c表示木棍长,k表示木棍宽
}e[];
bool vis[];
bool cmp(kkk &a,kkk &b) {//先按从高到低排列长度,长度相同的按从高到低排列宽度
if(a.c == b.c) return a.k > b.k;
return a.c > b.c;
}
int main()
{
scanf("%d",&n);
for(int i = ;i <= n; i++)
scanf("%d%d",&e[i].c,&e[i].k);
sort(e+,e+n+,cmp);
for(int i = ;i <= n; i++)
if(!vis[i]) {//如果这个木棍被处理过就跳过
kk = e[i].k;//保存当前宽
for(int j = i + ;j <= n; j++) {
if(!vis[j] && e[j].k <= kk) {//如果有宽度小于现有宽度且没有被处理过
vis[j] = ;//处理
kk = e[j].k;//记录当前宽
}
}
}
for(int i = ;i <= n; i++)
if(!vis[i]) ans++;//记录有几个没被标记
printf("%d",ans);
return ;
}
 

洛谷 P1233 木棍加工的更多相关文章

  1. 洛谷 P1233 木棍加工 解题报告

    P1233 木棍加工 题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间 ...

  2. 洛谷P1233 木棍加工【单调栈】

    题目:https://www.luogu.org/problemnew/show/P1233 题意: 有n根木棍,每根木棍有长度和宽度. 现在要求按某种顺序加工木棍,如果前一根木棍的长度和宽度都大于现 ...

  3. 洛谷P1233 [木棍加工]

    主要思路: 这道题一眼看过去就可以贪心.. 首先可以按L排序.. 显然排序之后我们就可以抛开L不管了.. 然后就可以愉快的贪心了.. 细节: 这道题可以看成用 最少的合法序列(详见原题) 装下所有木棍 ...

  4. 洛谷P1233 木棍加工题解 LIS

    突然发现自己把原来学的LIS都忘完了,正好碰见这一道题.|-_-| \(LIS\),也就是最长上升子序列,也就是序列中元素严格单调递增,这个东西有\(n^{2}\)和\(nlog_{2}n\)两种算法 ...

  5. 洛谷 P1233 木棍加工 题解

    题面 Dilworth定理:在数学理论中的序理论与组合数学中,Dilworth定理根据序列划分的最小数量的链描述了任何有限偏序集的宽度. 反链是一种偏序集,其任意两个元素不可比:而链则是一种任意两个元 ...

  6. 「洛谷P1233」木棍加工 解题报告

    P1233 木棍加工 题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间 ...

  7. P1233 木棍加工

    P1233 木棍加工 题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间 ...

  8. P1233木棍加工

    这个题被算法标签标为DP,但其实可能只是用dp求子序列,,(n方) 给出l与w,只要是l与w同时满足小于一个l与w,那么这个木棍不需要时间,反之需要1.看到这个题,首先想到了二维背包,然后发现没有最大 ...

  9. P1233 木棍加工 dp LIS

    题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间为1分钟: 如果刚处理 ...

随机推荐

  1. noip模拟赛 经营与开发

    题目描述 4X概念体系,是指在PC战略游戏中一种相当普及和成熟的系统概念,得名自4个同样以“EX”为开头的英语单词. eXplore(探索) eXpand(拓张与发展) eXploit(经营与开发) ...

  2. UVA 129_ Krypton Factor

    题意: 一个字符串含有两个相邻的重复的子串,则称这个串为容易的串,其他为困难的串,对于给定n,l,求出由前l个字符组成的字典序第n小的困难的串. 分析: 按字典序在字符串末尾增加新的字符,并从当前字符 ...

  3. UVA 437_The Tower of Babylon

    题意: 一堆石头,给定长宽高,每种石头均可以使用无数次,问这堆石头可以叠放的最高高度,要求下面的石头的长和宽分别严格大于上面石头的长和宽. 分析: 采用DAG最长路算法,由于长宽较大,不能直接用于表示 ...

  4. [bzoj1188][HNOI2007]分裂游戏_博弈论

    分裂游戏 bzoj-1188 HNOI-2007 题目大意:题目链接. 注释:略. 想法: 我们发现如果一个瓶子内的小球个数是奇数才是有效的. 所以我们就可以将问题变成了一个瓶子里最多只有一个球球. ...

  5. operamasks—omMessageBox的使用

    <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="test.aspx.cs&q ...

  6. Ubuntu 16.04安装Intel显卡驱动(解决Intel HD Graphics 630显卡驱动问题)

    一般Ubuntu都默认包含了Intel显卡的驱动,如果没有,那么先确定是不是显卡太高,比如I7第7代的CPU核显在Ubuntu 16.04中是没有的,导致画面会很卡,原因是Linux 4.4内核不包含 ...

  7. 条款八: 写operator new和operator delete时要遵循常规

    自己重写operator new时(条款10解释了为什么有时要重写它),很重要的一点是函数提供的行为要和系统缺省的operator new一致.实际做起来也就是:要有正确的返回值:可用内存不够时要调用 ...

  8. 移动硬盘/U盘上装Windows 7旗舰版(VHD版)

    真正的移动版WIN7,在移动硬盘/U盘上运行的WIN7 工具准备 - 联想Y450本本,已安装Windows 7旗舰版(或者WINPE3.0版),用来给移动WIN7做引导 -Win7.vhd,15G, ...

  9. [Unity3D]Unity3D游戏开发之从Unity3D到Eclipse

    ---------------------------------------------------------------------------------------------------- ...

  10. 关于Windows 8使用WMP播放音乐时WUDFHost跑CPU和硬盘的问题解决

    Windows 8使用Windows Media Player播放音乐的时候.事实上有一个这种情况,WMP和某个什么名字看起来非常屌的进程跑CPU非常高,这个跑非常高视你插入的SD卡内的文件数或者移动 ...