洛谷——P2252 取石子游戏
P2252 取石子游戏
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。
这题比较狗☞,要开$long$$long$
所谓的威佐夫博弈,貌似应用的只是他的结论,两个绝绝顶聪明的人,在玩一个灰常高大上的游戏——取石子,
即给你两堆石子,两个人轮流取,可以取走其中一堆的任意一个,或取走两堆石子中的相同石子,问先手必败的条件是什么?
答案是$(b-a)\times\frac{√5+1}{2}$,满足条件且先手者必败。
#include<bits/stdc++.h> using namespace std; long long a,b; int main()
{
scanf("%lld%lld",&a,&b);
if(a>b) swap(a,b);
if((long long)((b-a)*(sqrt(5.0)+1.0)/2.0)==a) printf("");
else printf(""); return ;
}
转载大佬博客
几种常见博弈的总结:
一. 巴什博奕(Bash Game):
A和B一块报数,每人每次报最少1个,最多报4个,看谁先报到30。这应该是最古老的关于巴什博奕的游戏了吧。
其实如果知道原理,这游戏一点运气成分都没有,只和先手后手有关,比如第一次报数,A报k个数,那么B报5-k个数,那么B报数之后问题就变为,A和B一块报数,看谁先报到25了,进而变为20,15,10,5,当到5的时候,不管A怎么报数,最后一个数肯定是B报的,可以看出,作为后手的B在个游戏中是不会输的。
那么如果我们要报n个数,每次最少报一个,最多报m个,我们可以找到这么一个整数k和r,使n=k*(m+1)+r,代入上面的例子我们就可以知道,如果r=0,那么先手必败;否则,先手必胜。
也就是$n\mod (m+1)=0$先手必败,反之先手必胜
二. 威佐夫博弈(Wythoff Game):
转上
三. 尼姆博弈(Nimm Game):
尼姆博弈指的是这样一个博弈游戏:有任意堆物品,每堆物品的个数是任意的,双方轮流从中取物品,每一次只能从一堆物品中取部分或全部物品,最少取一件,取到最后一件物品的人获胜。
结论就是:把每堆物品数全部异或起来,如果得到的值为0,那么先手必败,否则先手必胜。
四. 斐波那契博弈:
有一堆物品,两人轮流取物品,先手最少取一个,至多无上限,但不能把物品取完,之后每次取的物品数不能超过上一次取的物品数的二倍且至少为一件,取走最后一件物品的人获胜。
结论是:先手胜当且仅当n不是斐波那契数(n为物品总数)
emmm,推荐一篇有关博弈论的文章,看着玩儿
简单食用的博弈论
洛谷——P2252 取石子游戏的更多相关文章
- 洛谷P2252 取石子游戏(威佐夫博弈)
题目背景 无 题目描述 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后 ...
- 洛谷P1288 取数游戏II(博弈)
洛谷P1288 取数游戏II 先手必胜的条件需要满足如下中至少 \(1\) 条: 从初始位置向左走到第一个 \(0\) 的位置,经过边的数目为偶数(包含 \(0\) 这条边). 从初始位置向右走到第一 ...
- 洛谷 P4706 取石子 解题报告
P4706 取石子 题目描述 现在 Yopilla 和 yww 要开始玩游戏! 他们在一条直线上标记了 \(n\) 个点,从左往右依次标号为 \(1, 2, ..., n\) .然后在每个点上放置一些 ...
- P2252 取石子游戏 威佐夫博弈
$ \color{#0066ff}{ 题目描述 }$ 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆 ...
- 洛谷——P1123 取数游戏
P1123 取数游戏 题目描述 一个N×M的由非负整数构成的数字矩阵,你需要在其中取出若干个数字,使得取出的任意两个数字不相邻(若一个数字在另外一个数字相邻8个格子中的一个即认为这两个数字相邻),求取 ...
- 洛谷P1288 取数游戏II[博弈论]
题目描述 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流 ...
- 洛谷P1288 取数游戏II
题目描述 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流 ...
- 洛谷P1247 取火柴游戏
经典NIM游戏. 取XOR和即可. 注意输出方案时,找到大于异或和sum的,变为a[i] ^ sum即可. #include <cstdio> ; int a[N]; int main() ...
- 洛谷1288 取数游戏II
原题链接 因为保证有\(0\)权边,所以整个游戏实际上就是两条链. 很容易发现当先手距离\(0\)权边有奇数条边,那么必胜. 策略为:每次都将边上权值取光,逼迫后手向\(0\)权边靠拢.若此时后手不取 ...
随机推荐
- document.body.className = document.body.className.replace("siteorigin-panels-before-js","");
document.body.className = document.body.className.replace("siteorigin-panels-before-js",&q ...
- ios33--线程安全
// // ViewController.m // 05-掌握-线程安全 // // 多线程下载文件:每个线程下的部分可能是交错的,到时候就拼接不了.除非每个线程下载的不是交错的,而是从头到尾依次分开 ...
- 利用JFreeChart生成组合图表 (8) (转自 JSP开发技术大全)
利用JFreeChart生成组合图表 (8) (转自 JSP开发技术大全) 14.8 利用JFreeChart生成组合图表 实例位置:光盘\mingrisoft\14\dxyy\02 通过JFree ...
- 蓝书2.3 Trie字典树
T1 IMMEDIATE DECODABILITY poj 1056 题目大意: 一些数字串 求是否存在一个串是另一个串的前缀 思路: 对于所有串经过的点权+1 如果一个点的end被访问过或经过一个被 ...
- 使用Oracle Sql Developer将SQL SERVER 2008数据库移植到Oracle 11g
ORACLE官方提供的Sql Developer自带的Oracle Migration Workbench. 什么是Oracle SQL Developer?在官方页面上,是这样介绍它的: Oracl ...
- npm 是干什么的?
网上的 npm 教程主要都在讲怎么安装.配置和使用 npm,却不告诉新人「为什么要使用 npm」.今天我就来讲讲这个话题. 本文目标读者是「不太了解 npm 的新人」,大神您别看了,不然又说我啰嗦了 ...
- 15_activity生命周期方法说明
现在是可见并且可以被操作,所以现在是一个前台的Activity. 按一下Home键,它是先onPause然后onStop. 现在它就处于一个Stop停止的状态.停止的状态如果我当前内存够用的情况下,它 ...
- java笔记线程方式1线程终端与停止
public final void stop():让线程停止,过时了,但是还可以使用.public void interrupt():中断线程. 把线程的状态终止,并抛出一个InterruptedEx ...
- codeforces GYM 100781A【树的直径】
先求出每棵树的直径,排个序,要想图的直径最小的话需要每棵树的直径中点像直径最大的树的直径中点连边,这样直径有三种情况:是直径最大的树的直径:a[tot]:是直径最大的树和直径第二大的树的半径拼起来+1 ...
- bzoj 1642: [Usaco2007 Nov]Milking Time 挤奶时间【dp】
这不就是个n方dp吗--看了眼洛谷题解简直神仙打架 我全程没用到n-- 把休息时间并入产奶时间,注意"结束时间不挤奶",所以ei=ei+r-1,注意这个-1! 然后按r排序,设f[ ...