P2331 [SCOI2005]最大子矩阵
题目描述
这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。
输入输出格式
输入格式:
第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的分值的绝对值不超过32767)。
输出格式:
只有一行为k个子矩阵分值之和最大为多少。
输入输出样例
3 2 2
1 -3
2 3
-2 3
更新的话就是寻找i结尾的前驱最大值,所以还需要再for一遍
m=2,dp[i][j][k]:代表第一列到i项,第二列到j项时取了k个子矩阵,决策为对于第一列第二列i,j项取不取
更新的话跟上面一样,只不过两条列都找一遍,当然记得对于i==j这种情况特殊处理
#include<bits/stdc++.h>
using namespace std;
#define maxn 10000
typedef long long ll;
#define inf 2147483647
#define ri register int int n,m,K;
int sum1[],sum2[];
int dp1[][];
int dp2[][][];
int x,y; int main()
{
ios::sync_with_stdio(false);
// freopen("test.txt","r",stdin);
cin>>n>>m>>K;
if(m==)
{
for(int i=; i<=n; i++)
{
cin>>x;
sum1[i]=x+sum1[i-];
}
for(int i=; i<=n; i++)
for(int j=; j<=K; j++)
{
dp1[i][j]=dp1[i-][j];
for(int h=; h<=i; h++)
dp1[i][j]=max(dp1[i][j],dp1[h-][j-]+sum1[i]-sum1[h-]);
}
cout<<dp1[n][K];
return ;
}
for(int i=; i<=n; i++)
{
cin>>x>>y;
sum1[i]=sum1[i-]+x;
sum2[i]=sum2[i-]+y;
}
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
for(int k=; k<=K; k++)
{
dp2[i][j][k]=max(dp2[i-][j][k],dp2[i][j-][k]);
for(int h=; h<=i; h++)
dp2[i][j][k]=max(dp2[i][j][k],dp2[h-][j][k-]+sum1[i]-sum1[h-]);
for(int h=; h<=j; h++)
dp2[i][j][k]=max(dp2[i][j][k],dp2[i][h-][k-]+sum2[j]-sum2[h-]);
if(i==j)
for(int h=; h<=i; h++)
dp2[i][j][k]=max(dp2[i][j][k],dp2[h-][h-][k-]+sum1[i]-sum1[h-]+sum2[i]-sum2[h-]);
}
cout<<dp2[n][n][K]; return ;
}
P2331 [SCOI2005]最大子矩阵的更多相关文章
- 洛谷P2331 [SCOI2005]最大子矩阵 DP
P2331 [SCOI2005]最大子矩阵 题意 : 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 第一行为n,m,k(1≤n≤ ...
- luogu P2331 [SCOI2005]最大子矩阵
传送门 \[\huge\mathit{warning}\] \[\small\text{以下说明文字高能,请心脏病,,,,,,人士谨慎观看,请未成年人在家长陪同下观看}\] 皮这一下很开心 其实是代码 ...
- 洛谷P2331 [SCOI2005] 最大子矩阵[序列DP]
题目描述 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 输入输出格式 输入格式: 第一行为n,m,k(1≤n≤100,1≤m≤2 ...
- P2331 [SCOI2005]最大子矩阵 (动规:分类讨论状态)
题目链接:传送门 题目: 题目描述 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 输入输出格式 输入格式: 第一行为n,m,k( ...
- 洛谷 P2331 [SCOI2005]最大子矩阵
洛谷 这一题,乍一眼看上去只想到了最暴力的暴力--大概\(n^4\)吧. 仔细看看数据范围,发现\(1 \leq m \leq 2\),这就好办了,分两类讨论. 我先打了\(m=1\)的情况,拿了30 ...
- 洛谷P2331[SCOI2005]最大子矩阵
题目 DP 此题可以分为两个子问题. \(m\)等于\(1\): 原题目转化为求一行数列里的\(k\)块区间的和,区间可以为空的值. 直接定义状态\(dp[i][t]\)表示前i个数分为t块的最大值. ...
- BZOJ 1084: [SCOI2005]最大子矩阵 DP
1084: [SCOI2005]最大子矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1084 Description 这里有一个n* ...
- 1084: [SCOI2005]最大子矩阵
1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1325 Solved: 670[Submit][Stat ...
- bzoj千题计划198:bzoj1084: [SCOI2005]最大子矩阵
http://www.lydsy.com/JudgeOnline/problem.php?id=1084 m=1: dp[i][j] 前i个数,选了j个矩阵的最大和 第i个不选:由dp[i-1][j] ...
随机推荐
- Three.js开发指南---使用three.js的材质(第四章)
材质就像物体的皮肤,决定了几何体的外表,例如是否像草地/金属,是否透明,是否显示线框等 一 材质 THREE.js的材质分为多种,Three.js提供了一个材质基类THREE.Material, 该基 ...
- 【代码笔记】iOS-将字符串中特定后的字变成红色
一,效果图. 二,代码. ViewController.m - (void)viewDidLoad { [super viewDidLoad]; // Do any additional setup ...
- 免费的局域网协作办公方式—onlyoffice文档协作
局域网内想享受协作办公的乐趣,请移步到这里按照步骤部署.https://blog.csdn.net/hotqin888/article/details/79337881 它是免费开源的,经过作者的一些 ...
- linux查看某IP尝试连接成功和失败次数
查看连接失败次数 cat /var/log/secure | awk '/Failed/{print $(NF-3)}' | sort | uniq -c | awk '{print $2" ...
- 【已解决】mac上appium报错:“Could not find aapt Please set the ANDROID_HOME environment variable with the Android SDK root directory path”
按照网上教程配置完appium环境后,真机跑自动化过程,遇到如下报错: appium报错如下: [ADB] Checking whether aapt is present [ADB] The AND ...
- LeetCode题解之Leaf-Similar Trees
1.题目描述 2.问题分析 将叶子节点的值放入vector,然后比较. 3.代码 bool leafSimilar(TreeNode* root1, TreeNode* root2) { vector ...
- 自己实现more命令
#include <stdio.h> #include <stdlib.h> #define PAGELEN 24 #define LINELEN 512 int see_mo ...
- [POWERSHELL] [.net 3.5] [Windows Server] 在Windows Server上安装.NET3.5
Install-WindowsFeature Net-Framework-Core -source \\network\share\sxs
- 浅谈C#中的 async await 以及对线程相关知识的复习
C#5.0以后新增了一个语法糖,那就是异步方法async await,之前对线程,进程方面的知识有过较为深入的学习,大概知道这个概念,我的项目中实际用到C#异步编程的场景比较少,就算要用到一般也感觉T ...
- 高通 display 驱动【转】
高通display驱动 0. 关键字 MDSS : 高通平台lcd multimedia Display sub system DSI: Display Serial Interface qcom,m ...