BZOJ2749 HAOI2012外星人(数论)
不妨把求φ抽象成把将每个位置上的一个小球左移一格并分裂的过程,那么即求所有球都被移到1号格子的步数。
显然要达到1必须先到达2。可以发现每次分裂一定会分裂出2号位的球,因为2以外的质数一定是奇数。以及,每次移动至多将一个2号位的球移至1号位。
于是我们只要数出每个位置能将几个球分裂至2号位就可以了。注意初始时若2号位没有球答案要+1。
这个数数可以用线性筛搞定。n为质数则有f[n]=f[n-1],否则有f[n]=f[prime]+f[n/prime]。
(挤进bzoj前1k了www
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 100010
int T,n,f[N],prime[N],cnt=;
bool flag[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2749.in","r",stdin);
freopen("bzoj2749.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
flag[]=;f[]=;
for (int i=;i<=N-;i++)
{
if (!flag[i]) prime[++cnt]=i,f[i]=f[i-];
for (int j=;j<=cnt&&prime[j]*i<=N-;j++)
{
flag[prime[j]*i]=;
f[prime[j]*i]=f[prime[j]]+f[i];
if (i%prime[j]==) break;
}
}
T=read();
while (T--)
{
n=read();
long long ans=;
for (int i=;i<=n;i++)
{
int x=read(),y=read();
ans+=1ll*y*f[x]-(x==);
}
printf(LL,ans);
}
return ;
}
BZOJ2749 HAOI2012外星人(数论)的更多相关文章
- BZOJ2749: [HAOI2012]外星人
2749: [HAOI2012]外星人 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 377 Solved: 199[Submit][Status] ...
- Bzoj 2749: [HAOI2012]外星人 欧拉函数,数论,线性筛
2749: [HAOI2012]外星人 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 568 Solved: 302[Submit][Status][ ...
- 【BZOJ 2749】 2749: [HAOI2012]外星人 (数论-线性筛?类积性函数)
2749: [HAOI2012]外星人 Description Input Output 输出test行,每行一个整数,表示答案. Sample Input 1 2 2 2 3 1 Sample Ou ...
- 【bzoj2749】[HAOI2012]外星人
2749: [HAOI2012]外星人 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 677 Solved: 360[Submit][Status][ ...
- BZOJ 2749 HAOI 2012 外星人 数论 欧拉函数
题意: 给出一个数,给出的形式是其分解质因数后,对应的质因数pi及其次数qi,问对这个数不停求phi,直至这个数变成1,需要多少次.(多组数据) 范围:pi <= 1e5,qi <= 1e ...
- [HAOI2012]外星人
题目大意: 告诉你一个数n,求满足φ^x(n)=1的x. 思路: 首先我们可以发现满足φ(n)=1的数只有2,也就是说你得到最终的结果,最后一步肯定是φ(2). 同时,可以发现φ(φ(2^k))=φ( ...
- JZYZOJ1524 [haoi2012]外星人 欧拉函数
http://172.20.6.3/Problem_Show.asp?id=1524 大概可以算一个结论吧,欧拉函数在迭代的时候,每次迭代之后消去一个2,每个非2的质因子迭代一次又(相当于)生成一个2 ...
- 题解 P2350 【[HAOI2012]外星人】
题目链接 还是本宝宝写题解的一贯习惯 $ :$ 先吐槽吐槽这道题$……$ 相信不少同学第一眼一定没有看懂题.(因为我也没看懂) ~~初中~~数学知识: 对于函数 $ f(x)$ 有 $f^{-1}(x ...
- 2749: [HAOI2012]外星人
首先像我一样把柿子画出来或者看下hint 你就会发现其实是多了个p-1这样的东东 然后除非是2他们都是偶数,而2就直接到0了 算一下2出现的次数就好 #include<cstdio> #i ...
随机推荐
- OO课程学期末总结
OO课程学期末总结 测试VS正确性论证 OCL vs JSF 对象约束语言(Object Constraint Language), 简称OCL, 是一种指示用户建模系统中的限制方式. 他是UML可选 ...
- DQN(Deep Reiforcement Learning) 发展历程(三)
目录 不基于模型(Model-free)的预测 蒙特卡罗方法 时序差分方法 多步的时序差分方法 参考 DQN发展历程(一) DQN发展历程(二) DQN发展历程(三) DQN发展历程(四) DQN发展 ...
- CAN总线学习总结——错误帧和错误状态
CAN总线学习总结——错误帧和错误状态 标签: 数据 / 错误帧 / 错误状态 / CAN总线 / 总线协议 253 一.五种CAN总线可能发生的错误 1.CRC错误: 接收节点计算出的CRC校验值, ...
- .NET Core中向已存在文件的特定位置写入数据
本例使用.NET Core向一个文本文件中的特定位置写入数据,来模拟文件上传中的断点续传是如何在服务器端实现的. 新建一个.NET Core控制台项目FileContinueToWrite,其Prog ...
- URL Encode
用VC实现post数据常常会遇到URL编码问题 在此封装一个工具类进行UTF8编码的转换 源码来自php source code 只是简单的封装给C++调用 //URL 编解码类 //来自PHP源 ...
- Ubuntu学习总结-01 安装Ubuntu
Ubuntu(友帮拓.优般图.乌班图)是一个以桌面应用为主的开源GNU/Linux操作系统,Ubuntu 是基于Debian GNU/Linux,支持x86.amd64(即x64)和ppc架构,由全球 ...
- 【Python实践-7】输出100以内的所有素数
#输出100以内的所有素数,素数之间以一个空格区分(注意,最后一个数字之后不能有空格). i= l=[] : k= ,i): : k=k+ : l.append(i) i=i+ print(" ...
- Cloud Foundry 组件
原文:https://blog.csdn.net/little_crab_0924/article/details/78022391 Cloud Foundry 组件概述 Cloud Foundry ...
- 20155323刘威良《网络对抗》Exp3 免杀原理与实践
20155323刘威良<网络对抗>Exp3 免杀原理与实践 实践内容 1 正确使用msf编码器,msfvenom生成如jar之类的其他文件,veil-evasion,自己利用shellco ...
- GBDT源码剖析
如今,GBDT被广泛运用于互联网行业,他的原理与优点这里就不细说了,网上google一大把.但是,我自认为自己不是一个理论牛人,对GBDT的理论理解之后也做不到从理论举一反三得到更深入的结果.但是学习 ...