UVA 10780 - Again Prime? No Time.
思路好想,注意细节。错了很多次。
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <ctime>
#include <cstdlib>
#include <iostream>
using namespace std;
#define MOD 1000000
int prim[];
int o[];
int flag[];
int aim[];
int main()
{
int t,n,m,i,j,num = ,minz,temp,cas = ;
for(i = ;i <= ;i ++)
{
if(!o[i])
{
prim[num++] = i;
for(j = i+i;j <= ;j += i)
{
o[j] = ;
}
}
}
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&m,&n);
int tm = m;
memset(flag,,sizeof(flag));
memset(aim,,sizeof(aim));
for(i = ;i <= n;i ++)
{
temp = i;
for(j = ;j < num;j ++)
{
if(temp == ) break;
while(temp%prim[j] == )
{
flag[j] ++;
temp /= prim[j];
}
}
}
minz = ;
for(j = ;j < num;j ++)
{
while(m%prim[j] == )
{
aim[j] ++;
m /= prim[j];
}
}
for(j = ;j < num;j ++)
{
if(tm%prim[j] == )
minz = min(flag[j]/aim[j],minz);
}
if(minz == )
printf("Case %d:\nImpossible to divide\n",cas++);
else
printf("Case %d:\n%d\n",cas++,minz);
}
return ;
}
UVA 10780 - Again Prime? No Time.的更多相关文章
- UVA 10780 Again Prime? No Time. 分解质因子
The problem statement is very easy. Given a number n you have to determine the largest power of m,no ...
- UVA 10780 Again Prime No Time.(数学)
给定两个整数m和n,求最大的k使得m^k是n!的约数 对m质因子分解,然后使用勒让德定理求得n!包含的质数p的阶数,min(b[i] / a[i])即为结果k, 若为0无解 #include<c ...
- Uva 10780 Again Prime? No Time.(分解质因子)
题意:给你两个数m和n,问 n! 可以被 m^k 整除的k的最大值 思路:从这道我们可以想到n!末尾有多少个0的问题,让我们先想一下它的思想,我们找 n! 末尾有多少0, 实际上我们是在找n!中5的个 ...
- uva 1415 - Gauss Prime(高斯素数)
题目链接:uva 1415 - Gauss Prime 题目大意:给出一个a,b,表示高斯数a+bi(i=−2‾‾‾√,推断该数是否为高斯素数. 解题思路: a = 0 时.肯定不是高斯素数 a != ...
- UVA 10539 - Almost Prime Numbers(数论)
UVA 10539 - Almost Prime Numbers 题目链接 题意:给定一个区间,求这个区间中的Almost prime number,Almost prime number的定义为:仅 ...
- UVA 1415 - Gauss Prime(数论,高斯素数拓展)
UVA 1415 - Gauss Prime 题目链接 题意:给定a + bi,推断是否是高斯素数,i = sqrt(-2). 思路:普通的高斯素数i = sqrt(-1),推断方法为: 1.假设a或 ...
- UVa 10780 (质因数分解) Again Prime? No Time.
求mk整除n!,求k的最大值. 现将m分解质因数,比如对于素数p1分解出来的指数为k1,那么n!中能分解出多少个p1出来呢? 考虑10!中2的个数c:1~10中有10/2个数是2的倍数,c += 5: ...
- Again Prime? No Time. UVA - 10780(质因子分解)
m^k就是让m的每个质因子个数都增加了k倍 求m的质因子 在n!中增加了多少倍就好了,因为m^k 表示每一个质因子增加相同的倍数k 所以我们需要找到增加倍数最小的那个..短板效应 其它质因子多增加 ...
- UVA P12101 【Prime Path】
题库 :UVA 题号 :12101 题目 :Prime Path link :https://www.luogu.org/problemnew/show/UVA12101
随机推荐
- 解决MYSQL错误:ERROR 1040 (08004): Too many connections
方法一: show processlist; show variables like 'max_connections'; show global status like 'max_used_conn ...
- C++ 基础 const放在函数末尾的意思
- POJ2406 Power Strings(KMP,后缀数组)
这题可以用后缀数组,KMP方法做 后缀数组做法开始想不出来,看的题解,方法是枚举串长len的约数k,看lcp(suffix(0), suffix(k))的长度是否为n- k ,若为真则len / k即 ...
- html5 离线存储 worker
html5 离线存储 <!DOCTYPE html> <html manifest="cache.manifest"> <!--manifest存储- ...
- ThinkPHP中getField( )和field( )
做数据库查询的时候,比较经常用到这两个,总是查手册,记不住,现在把它总结下,希望以后用的时候不查手册了. 不管是用select 查询数据集,还是用find 查询数据,常配合连贯操作where.fiel ...
- ok6410,mmu,内存管理
MMU 一.MMU学习 MMU其实就是一个页表.将虚拟地址通过查表的方式,对应到物理地址去他由一个或一组芯片组成,一般存在与协处理器中. 1.将虚拟地址转化为物理地址 2.访问权限管理 1.1得出mm ...
- NuGet学习笔记(2) 使用图形化界面打包自己的类库
上文NuGet学习笔记(1) 初识NuGet及快速安装使用说到NuGet相对于我们最重要的功能是能够搭建自己的NuGet服务器,实现公司内部类库的轻松共享更新.在安装好NuGet扩展后,我们已经能够通 ...
- JQuery经典小例子——可编辑的表格
可编辑的表格: 屏幕剪辑的捕获时间: 2015/8/14 9:16 HTML代码为: <!DOCTYPE html> <htmlxmlns="http://www.w3.o ...
- 删除表数据drop、truncate和delete的用法
说到删除表数据的关键字,大家记得最多的可能就是delete了 然而我们做数据库开发,读取数据库数据.对另外的两兄弟用得就比较少了 现在来介绍另外两个兄弟,都是删除表数据的,其实也是很容易理解的 老大- ...
- AndroidTips:selector的disable状态为什么无效?
正确的姿势: <?xml version="1.0" encoding="utf-8"?> <selector xmlns:android=& ...