UVA 10780 - Again Prime? No Time.
思路好想,注意细节。错了很多次。
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <ctime>
#include <cstdlib>
#include <iostream>
using namespace std;
#define MOD 1000000
int prim[];
int o[];
int flag[];
int aim[];
int main()
{
int t,n,m,i,j,num = ,minz,temp,cas = ;
for(i = ;i <= ;i ++)
{
if(!o[i])
{
prim[num++] = i;
for(j = i+i;j <= ;j += i)
{
o[j] = ;
}
}
}
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&m,&n);
int tm = m;
memset(flag,,sizeof(flag));
memset(aim,,sizeof(aim));
for(i = ;i <= n;i ++)
{
temp = i;
for(j = ;j < num;j ++)
{
if(temp == ) break;
while(temp%prim[j] == )
{
flag[j] ++;
temp /= prim[j];
}
}
}
minz = ;
for(j = ;j < num;j ++)
{
while(m%prim[j] == )
{
aim[j] ++;
m /= prim[j];
}
}
for(j = ;j < num;j ++)
{
if(tm%prim[j] == )
minz = min(flag[j]/aim[j],minz);
}
if(minz == )
printf("Case %d:\nImpossible to divide\n",cas++);
else
printf("Case %d:\n%d\n",cas++,minz);
}
return ;
}
UVA 10780 - Again Prime? No Time.的更多相关文章
- UVA 10780 Again Prime? No Time. 分解质因子
The problem statement is very easy. Given a number n you have to determine the largest power of m,no ...
- UVA 10780 Again Prime No Time.(数学)
给定两个整数m和n,求最大的k使得m^k是n!的约数 对m质因子分解,然后使用勒让德定理求得n!包含的质数p的阶数,min(b[i] / a[i])即为结果k, 若为0无解 #include<c ...
- Uva 10780 Again Prime? No Time.(分解质因子)
题意:给你两个数m和n,问 n! 可以被 m^k 整除的k的最大值 思路:从这道我们可以想到n!末尾有多少个0的问题,让我们先想一下它的思想,我们找 n! 末尾有多少0, 实际上我们是在找n!中5的个 ...
- uva 1415 - Gauss Prime(高斯素数)
题目链接:uva 1415 - Gauss Prime 题目大意:给出一个a,b,表示高斯数a+bi(i=−2‾‾‾√,推断该数是否为高斯素数. 解题思路: a = 0 时.肯定不是高斯素数 a != ...
- UVA 10539 - Almost Prime Numbers(数论)
UVA 10539 - Almost Prime Numbers 题目链接 题意:给定一个区间,求这个区间中的Almost prime number,Almost prime number的定义为:仅 ...
- UVA 1415 - Gauss Prime(数论,高斯素数拓展)
UVA 1415 - Gauss Prime 题目链接 题意:给定a + bi,推断是否是高斯素数,i = sqrt(-2). 思路:普通的高斯素数i = sqrt(-1),推断方法为: 1.假设a或 ...
- UVa 10780 (质因数分解) Again Prime? No Time.
求mk整除n!,求k的最大值. 现将m分解质因数,比如对于素数p1分解出来的指数为k1,那么n!中能分解出多少个p1出来呢? 考虑10!中2的个数c:1~10中有10/2个数是2的倍数,c += 5: ...
- Again Prime? No Time. UVA - 10780(质因子分解)
m^k就是让m的每个质因子个数都增加了k倍 求m的质因子 在n!中增加了多少倍就好了,因为m^k 表示每一个质因子增加相同的倍数k 所以我们需要找到增加倍数最小的那个..短板效应 其它质因子多增加 ...
- UVA P12101 【Prime Path】
题库 :UVA 题号 :12101 题目 :Prime Path link :https://www.luogu.org/problemnew/show/UVA12101
随机推荐
- Delphi 的知识体系
第一部分 快速开发的基础 第1章 Delphi 5下的Windows编程 1 1.1 Delphi产品家族 1 1.2 Delphi是什么 3 1.2.1 可视化开 ...
- PHP面向对象编程之深入理解方法重载与方法覆盖(多态)
这篇文章主要介绍了PHP面向对象编程之深入理解方法重载与方法覆盖(多态)的相关资料,需要的朋友可以参考下: 什么是多态? 多态(Polymorphism)按字面的意思就是"多种状态" ...
- OGG异常处理
ALTER REPLICAT LCMA1REP,BEGIN NOW 从最新的trail文件开始读取 ALTER REPLICAT LCMA1REP,EXTSEQNO 191(对应的 trail的序号 ...
- ASP.NET Identity 3.0教程
(此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:我相信有些人和我一样,已经开始把ASP.NET 5用于产品开发了.不过现在最大的问题是 ...
- 六款小巧的HTTP Server[C语言]
1.micro_httpd - really small HTTP server特点: 支持安全的 .. 上级目录过滤 支持通用的MIME类型 支持简单的目录 支持目录列表 支持使用 index.ht ...
- HTTP访问的两种方式(HttpClient+HttpURLConnection)整合汇总对比(转)
在Android上http 操作类有两种,分别是HttpClient和HttpURLConnection,其中两个类的详细介绍可以问度娘. HttpClient: HttpClient是Apache ...
- javascript中时间的手动创建date的方式
new Date("month dd,yyyy hh:mm:ss"); new Date("month dd,yyyy"); new Date(yyyy,mth ...
- TCP粘包/拆包问题
无论是服务端还是客户端,当我们读取或者发送消息的时候,都需要考虑TCP底层的粘包/拆包机制. TCP粘包/拆包 TCP是个"流"协议,所谓流,就是没有界限的一串数据.大家可以想想河 ...
- 《DSP using MATLAB》示例Example5.2
代码: L = 5; N = 20; k = [-N/2:N/2]; % square wave parameters xn = [ones(1,L), zeros(1,N-L)]; % Sq wav ...
- 移动端网页 -- 安卓与IOS兼容
1.在a链接长按时,ios系统会识别并复制a链接中的href值,而安卓不会,只会选择复制文字 关于长按复制其他区域内容:pc端可以实现,在移动端目前还没有找到解决方案,很多都是基于flash的 2.i ...