TensorBoard简介

Tensorflow发布包中提供了TensorBoard,用于展示Tensorflow任务在计算过程中的Graph、定量指标图以及附加数据。大致的效果如下所示,

TensorBoard工作机制

TensorBoard 通过读取 TensorFlow 的事件文件来运行。TensorFlow 的事件文件包括了你会在 TensorFlow 运行中涉及到的主要数据。关于TensorBoard的详细介绍请参考TensorBoard:可视化学习。下面做个简单介绍。

Tensorflow的API中提供了一种叫做Summary的操作,用于将Tensorflow计算过程的相关数据序列化成字符串Tensor。例如标量数据的图表scalar_summary或者梯度权重的分布histogram_summary

通过tf.train.SummaryWriter来将序列化后的Summary数据保存到磁盘指定目录(通过参数logdir指定)。此外,SummaryWriter构造函数还包含了一个可选参数GraphDef,通过指定该参数,可以在TensorBoard中展示Tensorflow中的Graph(如上图所示)。

大致的代码框架如下所示:

merged_summary_op = tf.merge_all_summaries()
summary_writer = tf.train.SummaryWriter('/tmp/mnist_logs', sess.graph)
total_step = 0
while training:
total_step += 1
session.run(training_op)
if total_step % 100 == 0:
summary_str = session.run(merged_summary_op)
summary_writer.add_summary(summary_str, total_step)

启动TensorBoard的命令如下,

python tensorflow/tensorboard/tensorboard.py --logdir=/tmp/mnist_logs

其中--logdir命令行参数指定的路径必须跟SummaryWriter的logdir参数值保持一致,TensorBoard才能够正确读取到Tensorflow的事件文件。

启动Tensorflow后,我们在浏览器中输入http://localhost:6006 即可访问TensorBoard页面了。

通过MNIST实例来验证TensorBoard

tensorflow/tensorflow的源代码目录tensorflow/examples/tutorials/mnist目录下提供了手写数字MNIST识别样例代码。该样例代码同样包含了SummaryWriter的相关代码,我们可以使用该样例代码来验证一下TensorBoard的效果。

首先,克隆一下tensorflow的代码库到本地,

$ git clone https://github.com/tensorflow/tensorflow.git
$ cd tensorflow/examples/tutorials/mnist/
$ emacs fully_connected_feed.py

对fully_connected_feed.py的代码做一下下面两个地方的修改:

  1. 将29、30行的import语句修改一下

    import input_data
    import mnist
  2. 将154行的FLAGS.train_dir修改成'/opt/tensor':

    # Instantiate a SummaryWriter to output summaries and the Graph.
    summary_writer = tf.train.SummaryWriter('/opt/tensor', sess.graph)

样例代码准备好了,下面我们如何启动TensorBoard。

Tensorflow官方的Docker镜像tensorflow/tensorflow提供了一个可快速使用Tensorflow的途径。不过该镜像默认启动的是jupyter。我们通过下面命令通过该镜像启动TensorBoard,并且将我们准备好的MNIST样例代码通过volume挂载到容器中。

lienhuadeMacBook-Pro:tensorflow lienhua34$ docker run -d -p : --name=tensorboard -v /Users/lienhua34/Programs/python/tensorflow/tensorflow/examples/tutorials/mnist:/tensorflow/mnist tensorflow/tensorflow tensorboard --logdir=/opt/tensor
50eeb7282f60c10ed52d26f34feeb3472cf36d83c546357801c45e14939adf1a
lienhuadeMacBook-Pro:tensorflow lienhua34$
lienhuadeMacBook-Pro:tensorflow lienhua34$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
50eeb7282f60 tensorflow/tensorflow "tensorboard --logdir" minutes ago Up seconds 0.0.0.0:->/tcp, /tcp tensorboard

此时,我们在浏览器中输入http://localhost:6006/ ,得到下面的效果,

因为我们还没有运行MNIST的样例代码,所以TensorBoard提示没有数据。下面我们将进入tensorboard容器中运行MNIST的样例代码,

lienhuadeMacBook-Pro:tensorflow lienhua34$ docker exec -ti tensorboard /bin/bash
root@50eeb7282f60:/notebooks# cd /tensorflow/mnist/
root@50eeb7282f60:/tensorflow/mnist# python fully_connected_feed.py
Extracting data/train-images-idx3-ubyte.gz
Extracting data/train-labels-idx1-ubyte.gz
Extracting data/t10k-images-idx3-ubyte.gz
Extracting data/t10k-labels-idx1-ubyte.gz
Step : loss = 2.31 (0.010 sec)
Step : loss = 2.13 (0.007 sec)
Step : loss = 1.90 (0.008 sec)
Step : loss = 1.56 (0.008 sec)
Step : loss = 1.37 (0.007 sec)
Step : loss = 0.99 (0.005 sec)
Step : loss = 0.82 (0.004 sec)
Step : loss = 0.77 (0.004 sec)
Step : loss = 0.83 (0.004 sec)
Step : loss = 0.54 (0.004 sec)
Training Data Eval:
Num examples: Num correct: Precision @ : 0.8555
Validation Data Eval:
Num examples: Num correct: Precision @ : 0.8606
Test Data Eval:
Num examples: Num correct: Precision @ : 0.8639
Step : loss = 0.52 (0.010 sec)
Step : loss = 0.58 (0.444 sec)
Step : loss = 0.44 (0.005 sec)
Step : loss = 0.42 (0.005 sec)
Step : loss = 0.69 (0.005 sec)
Step : loss = 0.43 (0.004 sec)
Step : loss = 0.43 (0.006 sec)
Step : loss = 0.39 (0.004 sec)
Step : loss = 0.34 (0.004 sec)
Step : loss = 0.34 (0.004 sec)
Training Data Eval:
Num examples: Num correct: Precision @ : 0.8953
Validation Data Eval:
Num examples: Num correct: Precision @ : 0.9012
Test Data Eval:
Num examples: Num correct: Precision @ : 0.8987
root@50eeb7282f60:/tensorflow/mnist# ls -l /opt/tensor
total
-rw-r--r-- root root Oct : events.out.tfevents..50eeb7282f60

通过上面的运行结果,我们看到MNIST样例代码正常运行,而且在/opt/tensor目录下也生成了Tensorflow的事件文件events.out.tfevents.1477407177.50eeb7282f60。此时我们刷新一下TensorBoard的页面,看到的效果如下,

如果想看到TensorBoard展示的丰富信息,可以使用mnist目录下的mnist_with_summaries.py文件。

(done)

Tensorflow学习笔记3:TensorBoard可视化学习的更多相关文章

  1. TensorFlow基础笔记(9) Tensorboard可视化显示以及查看pb meta模型文件的方法

    参考: http://blog.csdn.net/l18930738887/article/details/55000008 http://www.jianshu.com/p/19bb60b52dad ...

  2. qml学习笔记(二):可视化元素基类Item详解(上半场anchors等等)

    原博主博客地址:http://blog.csdn.net/qq21497936本文章博客地址:http://blog.csdn.net/qq21497936/article/details/78516 ...

  3. TensorFlow基础笔记(0) 参考资源学习文档

    1 官方文档 https://www.tensorflow.org/api_docs/ 2 极客学院中文文档 http://www.tensorfly.cn/tfdoc/api_docs/python ...

  4. TensorFlow基础笔记(3) cifar10 分类学习

    TensorFlow基础笔记(3) cifar10 分类学习 CIFAR-10 is a common benchmark in machine learning for image recognit ...

  5. 【神经网络与深度学习】学习笔记:AlexNet&Imagenet学习笔记

    学习笔记:AlexNet&Imagenet学习笔记 ImageNet(http://www.image-net.org)是李菲菲组的图像库,和WordNet 可以结合使用 (毕业于Caltec ...

  6. [原创]java WEB学习笔记75:Struts2 学习之路-- 总结 和 目录

    本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱 ...

  7. [原创]java WEB学习笔记66:Struts2 学习之路--Struts的CRUD操作( 查看 / 删除/ 添加) 使用 paramsPrepareParamsStack 重构代码 ,PrepareInterceptor拦截器,paramsPrepareParamsStack 拦截器栈

    本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱 ...

  8. Vue学习笔记-Vue.js-2.X 学习(六)===>脚手架Vue-CLI(项目说明-Babel)

    五  Vue学习-vue-cli脚手架学习(创建只选一个选项:Babel) 1. 项目目录说明 node_modules : 包管理文件夹 public : 静态资源 src : 源代码 gitign ...

  9. Vue学习笔记-Vue.js-2.X 学习(五)===>脚手架Vue-CLI(PyCharm)

    Vue项目在pycharm中配置 退出运行: ctrl+c Vue学习笔记-Vue.js-2.X 学习(六)===>脚手架Vue-CLI(项目说明)

随机推荐

  1. 全站HTTPs,没那么简单

    “全站 HTTPs”俨然成了目前的热门话题,很多网站都在摩拳擦掌要实行全站 HTTPs.凑巧,我们(沪江)也在推行这个计划. 一开始大家想得都很简单,把证书购买了.配好了,相应的路径改一改,就没有问题 ...

  2. 不要轻易使用linq代替sql

    使用Entityframework+Reposity模式 写出的代码执行效率极低. Linq代码: var querySql = rel_project_personservice.GetItems( ...

  3. Linux服务器开机没响应,BIOS信息都没有

    于2015-10-16,记得是4月份装的服务器,上边ineedle都部署完毕,当时没有派上用场,这次华为测试需要一台ineedle测试机,便把这个安装好的ineedle请出来了,插上电源后,接上网线, ...

  4. java 自动装箱自动拆箱

    1.Java数据类型 在介绍Java的自动装箱和拆箱之前,我们先来了解一下Java的基本数据类型. 在Java中,数据类型可以分为两大种,Primitive Type(基本类型)和Reference ...

  5. django csrf 处理简介

    CSRF 是什么 CSRF 即跨站请求伪造,在用户不知情的情况下向有漏洞的网站发送请求.例如有正常网站A,恶意网站B, 用户若对A B 两个网站都有访问,B 可能伪造请求到 A,比如提交表单.至于具体 ...

  6. POJ2488A Knight's Journey[DFS]

    A Knight's Journey Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 41936   Accepted: 14 ...

  7. Unity 脚本的未来发展

    新技术之IL2CPP 最近,我们谈到了Unity 的WebGL . 在那篇文中我们简要谈论到脚本在 WebGL  中的运行的新技术称为"IL2CPP" .然而IL2CPP 所代表的 ...

  8. USB Type-C 接口有什么优点?

    USB Type-C 接口有什么优点? 提到USB Type-C接口(以下简称为USB-C),大家第一个能想到的是USB-C接口能正反插,用起来很舒服.了解更多的可能还支持USB-C接口速度更快, 达 ...

  9. 移植SDL运行库到Tiny6410 上

    在移植游戏之前, 我们首先需要将 SDL/SDL_mixer/SDL_ttf/SDL_image 这四个库移植到 Tiny6410 上, 另外还需要 iconv 库. libiconv-1.13.1. ...

  10. [No000017]单词拼写记不住?试试这俩方法-单词拼写,怎么记又快又好?