bzoj 4627 值域线段树
4627: [BeiJing2016]回转寿司
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 523 Solved: 227
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
1 2 3 4 5
Sample Output
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define MAX 100005
#define M ((L+R)>>1)
const LL inf=;
LL pre[MAX];
int total_node=,root=;
int child[MAX*][];
LL sum[MAX*];
void irt(LL L,LL R,int id,LL x)
{
sum[id]++;
if(L==R){return;}
if(x<=M){
if(child[id][]==) child[id][]=++total_node;
irt(L,M,child[id][],x);
}
else{
if(child[id][]==) child[id][]=++total_node;
irt(M+,R,child[id][],x);
}
}
LL ask(LL L,LL R,int id,LL l,LL r)
{
if(L>=l&&R<=r) return sum[id];
LL s=;
if(l<=M&&child[id][]) s+=ask(L,M,child[id][],l,r);
if(r>M&&child[id][]) s+=ask(M+,R,child[id][],l,r);
return s;
}
int main()
{
freopen("in.txt","r",stdin);
int N,m,i,j,k;
LL Li,Ri,ai;
scanf("%d%lld%lld",&N,&Li,&Ri);
for(i=;i<=N;++i){
scanf("%lld",&ai);
pre[i]=pre[i-]+ai;
}
LL ans=;
irt(-inf,inf,root,);
for(i=;i<=N;++i)
{
ans+=ask(-inf,inf,root,pre[i]-Ri,pre[i]-Li);;
irt(-inf,inf,root,pre[i]);
}
cout<<ans<<endl;
return ;
}
bzoj 4627 值域线段树的更多相关文章
- 值域线段树 bzoj 4627
这是题目链接4627: [BeiJing2016]回转寿司 题目大意: 给定n个数,求有多少个字段和在 满足 L<=sum<=R; 解题思路 需要解这个题目,需要有线段树加可持续化的思想, ...
- BZOJ 3218(a + b Problem-二分图套值域线段树)
出这题的人是怎么想出来的…… 言归正传,这题是二分图套值域线段树. 首先经过 @Vfleaking的神奇建图后,把图拆成二分图, 不妨利用有向图最小割的性质建图(以前我一直以为最小割和边的方向无关,可 ...
- BZOJ.4184.shallot(线段树分治 线性基)
BZOJ 裸的线段树分治+线性基,就是跑的巨慢_(:з」∠)_ . 不知道他们都写的什么=-= //41652kb 11920ms #include <map> #include < ...
- [BZOJ3065]带插入区间K小值 解题报告 替罪羊树+值域线段树
刚了一天的题终于切掉了,数据结构题的代码真**难调,这是我做过的第一道树套树题,做完后感觉对树套树都有阴影了......下面写一下做题记录. Portal Gun:[BZOJ3065]带插入区间k小值 ...
- Permutation UVA - 11525(值域树状数组,树状数组区间第k大(离线),log方,log)(值域线段树第k大)
Permutation UVA - 11525 看康托展开 题目给出的式子(n=s[1]*(k-1)!+s[2]*(k-2)!+...+s[k]*0!)非常像逆康托展开(将n个数的所有排列按字典序排序 ...
- [BZOJ 4025]二分图(线段树分治+带边权并查集)
[BZOJ 4025]二分图(线段树分治+带边权并查集) 题面 给出一个n个点m条边的图,每条边会在时间s到t出现,问每个时间的图是否为一个二分图 \(n,m,\max(t_i) \leq 10^5\ ...
- 【BZOJ 3476】 线段树===
59 懒惰的奶牛贝西所在的牧场,散落着 N 堆牧草,其中第 i 堆牧草在 ( Xi,Yi ) 的位置,数量有 Ai 个单位.贝西从家移动到某一堆牧草的时候,只能沿坐标轴朝正北.正东.正西.正南这四个 ...
- Luogu P1198 BZOJ 1012 最大数 (线段树)
手动博客搬家: 本文发表于20170821 14:32:05, 原地址https://blog.csdn.net/suncongbo/article/details/77449455 URL: (Lu ...
- bzoj 3585 mex - 线段树 - 分块 - 莫队算法
Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. 从第三行开始,每行一个询问 ...
随机推荐
- 栈的最大值问题 max问题 min问题 队列的max问题
常数时间求栈的最大值 问题描述: 一个栈stack,具有push和pop操作,其时间复杂度皆为O(1). 设计算法max操作,求栈中的最大值,该操作的时间复杂度也要求为O(1). 可以修改栈的存储 ...
- 安装mysql8.0.11以及修改root密码、连接navicat for mysql。
最近在学习node.js,少不得要跟数据库打交道,于是打算安装一个数据库软件,在mongedb和mysql之间选择了mysql.作为一个数据库新人不敢评论孰好孰坏,最后选择mysql纯属因为公司在用m ...
- HTTPS原理解析-转
这篇文章关于Https的讲解真的是太透彻了,转过来备忘. 来源:腾讯bugly 另附两个SSL/TLS的交互详解:一.二 基于此文章的学习总结:下一篇文章 1.HTTPS 基础 HTTPS(Secur ...
- 走近AbstractQueuedSynchronizer
走近AbstractQueuedSynchronizer 一.从类结构开始 Java并发包中的同步器是很多并发组件的基础,如各种Lock,ConcurrentHashMap中的Segment,阻塞队列 ...
- RedisTemplate访问Redis数据结构
https://www.jianshu.com/p/7bf5dc61ca06 Redis 数据结构简介 Redis 可以存储键与5种不同数据结构类型之间的映射,这5种数据结构类型分别为String(字 ...
- css 中 transition 需要注意的问题
cubic-bezier 是 transition-timing-function 的值的一种. 四个参数的关系式如下(t 代表时间,取值范围 [0, 1]):P0(1-t)3 + 3P1t(1-t) ...
- Java管程解决生产者消费者问题
同样是实验存档.//.. 依然以生产者消费者问题作为背景. 管程(=“资源管理程序”)将资源和对资源的操作封装起来,资源使用者通过接口操作资源就ok,不用去考虑进程同步的问题. 管程: package ...
- 20145109 《Java程序设计》第九周学习总结
JDBC 1 . DriverManager Class.forName("oracle.jdbc.driver.OracleDriver").newInstance(); 2 . ...
- unsigned short A = 10; printf("~A = %u\n", ~A); char c=128; printf("c=%d\n",c); 输出多少?
这是题目给出的答案:第一题,-A =0xfffffff5,int值 为-11,但输出的是uint.所以输出4294967285 第二题,c=0x10,输出的是int,最高位为1,是负数,所以它的值就是 ...
- POJ-2479 Maximum sum(动态规划)
最大子序列和的加强版. 借助最大子序列和,分别正向和反向遍历一遍得到left和right数组(具体含义见代码注释) 然后再对left和right数组进行修正,保存从对应元素起向左或向右的最大连续和. ...