Locality preserving hashing for fast image search: theory and applications
Is there any Java library that provides an implementation (or several) of a Locality Preserving Hash Function for Strings?
有没有Java类库提供Locality Perserving Hash方法的实现?
ABSTRACT摘要
State-of-the-art hashing methods, such as the kernelised locality-sensitive hashing and spectral hashing, have high algorithmic complexities to build the hash codes and tables. Our observation from the existing hashing method is that, putting two dissimilar data points into the same hash bucket only reduces the efficiency of the hash table, but it does not hurt the query accuracy. Whereas putting two similar data points into different hash buckets will reduce the correctness (i.e. query accuracy) of a hashing method. Therefore, it is much more important for a good hashing method to ensure that similar data points have high probabilities to be put to the same bucket, than considering those dissimilar data-point relations. On the other side, attracting similar data points to the same hash bucket will naturally suppress dissimilar data points to be put into the same hash bucket. With this locality-preserving observation, we naturally propose a new hashing method called the locality-preserving hashing, which builds the hash codes and tables with much lower algorithmic complexity. Experimental results show that the proposed method is very competitive in terms of the training time spent for large data-sets among the state of the arts, and with reasonable
or even better query accuracy.
现有的哈希方法,如核化的局部敏感哈希和谱哈希,在建立哈希码和表时具有很高的算法复杂度。我们从现有的哈希方法中观察到,将两个不同的数据点放入相同的哈希桶中只会降低哈希表的效率,但不会影响查询精度。但是,将两个相似的数据点放入不同的哈希捅将降低该哈希方法的的准确性(例如,查询精度)。因此,与其考虑这些不相似的数据点关系相比,一个好的哈希方法更重要地是要确保相似数据点具有高的概率被放到相同的桶中。从另一方面来说,将相似的数据点吸引到相同的哈希桶也会自然地抑制不相关的数据点被放入相同的哈希桶。使用这种locality-preserving的观察方法,我们自然地提出了一种新的哈希方法叫locality-preserving hashing,它在建立哈希码和哈希表时使用的是更低的算法复杂度。实验结果表明,所提出的方法在训练大数据集的时间上具有很强的竞争力,并且是合理的甚至更好的查询精度。
Locality preserving hashing for fast image search: theory and applications的更多相关文章
- 局部敏感哈希-Locality Sensitivity Hashing
一. 近邻搜索 从这里开始我将会对LSH进行一番长篇大论.因为这只是一篇博文,并不是论文.我觉得一篇好的博文是尽可能让人看懂,它对语言的要求并没有像论文那么严格,因此它可以有更强的表现力. 局部敏感哈 ...
- 局部敏感哈希-Locality Sensitive Hashing
局部敏感哈希 转载请注明http://blog.csdn.net/stdcoutzyx/article/details/44456679 在检索技术中,索引一直须要研究的核心技术.当下,索引技术主要分 ...
- 【Paper Reading】Deep Supervised Hashing for fast Image Retrieval
what has been done: This paper proposed a novel Deep Supervised Hashing method to learn a compact si ...
- 转:locality sensitive hashing
Motivation The task of finding nearest neighbours is very common. You can think of applications like ...
- [Algorithm] 局部敏感哈希算法(Locality Sensitive Hashing)
局部敏感哈希(Locality Sensitive Hashing,LSH)算法是我在前一段时间找工作时接触到的一种衡量文本相似度的算法.局部敏感哈希是近似最近邻搜索算法中最流行的一种,它有坚实的理论 ...
- LSH(Locality Sensitive Hashing)原理与实现
原文地址:https://blog.csdn.net/guoziqing506/article/details/53019049 LSH(Locality Sensitive Hashing)翻译成中 ...
- Locality Sensitive Hashing,LSH
1. 基本思想 局部敏感(Locality Senstitive):即空间中距离较近的点映射后发生冲突的概率高,空间中距离较远的点映射后发生冲突的概率低. 局部敏感哈希的基本思想类似于一种空间域转换思 ...
- 局部敏感哈希算法(Locality Sensitive Hashing)
from:https://www.cnblogs.com/maybe2030/p/4953039.html 阅读目录 1. 基本思想 2. 局部敏感哈希LSH 3. 文档相似度计算 局部敏感哈希(Lo ...
- A Primer on Domain Adaptation Theory and Applications
目录 概 主要内容 符号说明 Prior shift Covariate shift KMM Concept shift Subspace mapping Wasserstein distance 应 ...
随机推荐
- 【BZOJ】2007: [Noi2010]海拔(平面图转对偶图)
题目 传送门:QWQ 分析 左上角是0,右下角是1.那么大概整张图是由0 1构成的. 那么我们要找到0和1的分界线,值就是最小割. 然后变成求原图最小割. 考虑到此题是平面图,那么就转成对偶图跑最短路 ...
- HTML5的离线存储有几种方式?
localStorage长期存储数据,浏览器关闭后数据不丢失: sessionStorage数据在浏览器关闭后自动删除.
- how to use jquery with primefaces
PrimeFaces already ships with jQuery bundled, yet you've downloaded and installed another one which ...
- MyBatis 学习记录5 MyBatis的二级缓存
主题 之前学习了一下MyBatis的一级缓存,主要涉及到BaseExecutor这个类. 现在准备学习记录下MyBatis二级缓存. 配置二级缓存与初始化发生的事情 首先二级缓存默认是不开启的,需要自 ...
- Node.js版-七夕无事,人艰勿拆,求别说...
七夕无事,端坐电脑前coding,略苦逼,人艰勿拆,求别说...
- 分别用js和css实现瀑布流
下午查找了瀑布流的相关原理,找了一些css3实现的还有js实现的,最后总结了一些比较简单的,易懂的整理起来 1.css3实现 只要运用到 column-count分列 column-width固 ...
- Lambert模型
[Lambert模型] 漫反射光的强度近似地服从于Lambert定律,即漫反射光的光强仅与入射光的方向和反射点处表面法向夹角的余弦成正比. 由此可以构造出Lambert漫反射模型:Idiffuse = ...
- __str__&__repr__
[__str__&__repr__] object.__str__(self): Called by the str() built-in function and by the print ...
- fedora 16 yum yuan
暑假买了几本Linux的书一直放在书架上没看,周末闲着没事就拿起本<LinuxC从入门到精通>看了起来,初学Linux首先要做的便是在电脑上安装Linux系统.于是按书上的要求下载了Fed ...
- Android中Activity的四种启动方式
谈到Activity的启动方式必须要说的是数据结构中的栈.栈是一种只能从一端进入存储数据的线性表,它以先进后出的原则存储数据,先进入的数据压入栈底,后进入的数据在栈顶.需要读取数据的时候就需要从顶部开 ...