大根堆的定义:1 大根堆是一个大根树 2 大根堆是一个完全二叉树

所以大根堆用数组表示是连续的,不会出现空白字段。

对于大根堆的插入

对于大根堆的插入,可以在排序前确定大根堆的形状,可以确定元素5从位置6插入,那么比较元素5和位置3的元素2,

元素5比元素2大,将2下移。接着比较元素5和元素20,一次类推,直到找到元素5的合理位置。

接着看一下如果插入的元素是21,怎么进行排序。

21比2大,所以将2下移,接着比较21和20,发现20比21小,20下移,最终21放到

根的位置。形成大根堆。

对于大根堆的删除

大根堆删除根元素,那么可以确定删除后的形状。可以理解成将最后一个叶子节点放在

合理位置,首先比较叶子节点元素10和根节点的两个孩子15和2,选出两个节点中最大的

元素15,15比10大,所以15进行气泡。放到根节点。然后15所在的位置2,变为不确定的问号。

由于14比10大,那么14起泡放到位置2,根据大根堆的形状,最后将10放到左节点。

将一个无序的完全二叉树变为大根堆

将一个无序的完全二叉树变为大根堆(或者小根堆),首先要找到最有一个叶子节点的父节点,

对该父节点为根节点的子树进行排序,生成一个大根堆(小根堆)。然后从节点位置依次

向前做同样的排序,将该节点到根节点的所有子树变为大根堆(小根堆)

举例子:

如上图所示,因为总共有6个节点,6/2 = 3,所以元素19的父节点是位置3的元素4,

将以4位根的子树变为大根堆。因为19比4大,所以19上移,4做叶子节点。依次类推,

从位置3到位置1的所有子树都按照这种逻辑处理,最终变成大根堆。

接着要处理位置2的子树,位置2的元素为1,两个节点为25和12,选最大的元素25,因为

25比1大,所以25进行上移,1变为叶子节点。这样位置2的子树就处理完了。

接着处理位置1,因为位置1的元素为6,两个节点分别为25和19,取最大节点元素25,

因为25比6大,所以25上移,而此时位置2还有两个节点元素1和元素12,需要比较元素6

和这两个节点中最大的,以确定大根堆。由于12比6大,所以12上移,6变为叶子节点。

最终用数组表示这个大根堆就是[25,12,19,1,6,4]

下面是代码实现和测试:

大根堆的类结构:

template <class T>
class maxHeap
{
public:
maxHeap(void)
{
m_nHeapSize = ;
m_nHeapCapacity = ;
m_pHeapArray = NULL;
} maxHeap(const maxHeap& tempHeap);
maxHeap(T * heapArray, int arrayLen); ~maxHeap(){ if(m_pHeapArray)
{
free(m_pHeapArray);
} m_pHeapArray = NULL;
m_nHeapSize = ;
m_nHeapCapacity = ;
} //插入节点
void insertNode(const T& t);
//pop堆顶元素
const T& popRoot();
//打印自己的堆元素,用数组表示法输出
void printHeap();
//将一个无序的数组变为大根堆
void createMaxHeap(T * heapArray, int arrayLen);
//销毁自己的堆元素
void deallocMaxHeap();
//打印数组的元素
void printHeap(T * heapArray, int arrayLen); private:
//堆的数组元素,连续区间首地址
T* m_pHeapArray;
//当前使用的大小
int m_nHeapSize;
//堆的容量,实际开辟的大小
int m_nHeapCapacity;
};

两个构造函数:

template <class T>
maxHeap<T>::maxHeap(const maxHeap &tempHeap){
m_nHeapSize = tempHeap.m_nHeapSize;
m_pHeapArray = malloc(sizeof(class maxHeap) *m_nHeapSize);
m_nHeapCapacity = m_nHeapSize;
} template <class T>
maxHeap<T>::maxHeap(T * heapArray, int arrayLen)
{
m_nHeapSize = arrayLen;
m_pHeapArray = malloc(sizeof(class maxHeap) * m_nHeapSize);
m_nHeapCapacity = arrayLen;
}

插入节点:

template <class T>
void maxHeap<T>::insertNode(const T& node)
{
m_nHeapSize ++;
if(m_nHeapSize >= m_nHeapCapacity)
{
m_pHeapArray = (T *)realloc(m_pHeapArray, sizeof(T) * m_nHeapSize *);
} m_nHeapCapacity = m_nHeapSize*; //当前节点所在位置
int currentIndex = m_nHeapSize;
//该节点父节点所在位置
int parentIndex = currentIndex/;
//当前节点为根节点,跳出循环直接插入即可
while(currentIndex != )
{
//父节点元素小于该node,因为是大根堆,所以父节点下移
if(m_pHeapArray[parentIndex -] < node)
{
//父节点数据下移
m_pHeapArray[currentIndex - ] = m_pHeapArray[parentIndex -];
//更新当前节点位置,当前比较位置上移
currentIndex = currentIndex/;
//父节点位置同样上移
parentIndex = parentIndex/;
}
else
{
break;
}
}
//因为节点数是从1开始的,所以节点数-1表示数组中的位置
m_pHeapArray[currentIndex -] = node; }

打印元素:

template <class T>
void maxHeap<T>::printHeap()
{
cout <<"current max heap array is :" << endl;
for(int i = ; i < m_nHeapSize; i++)
{
cout << m_pHeapArray[i] << " ";
}
cout << endl;
} template <class T>
void maxHeap<T>::printHeap(T * heapArray, int arrayLen)
{
cout <<"current max heap array is :" << endl;
for(int i = ; i < arrayLen; i++)
{
cout << heapArray[i] << " ";
}
cout << endl;
}

pop堆顶的元素,取出最大值

template <class T>
const T& maxHeap<T>::popRoot()
{
//先取出最后的叶子节点
const T& lastEle = m_pHeapArray[m_nHeapSize-]; //更新heapsize
m_nHeapSize --; //删除时需要从根节点开始,找到最大值起泡
int currentIndex= ;
//当前节点的做孩子
int leftChild = currentIndex *;
//当前节点的孩子节点超过堆大小,说明该节点为叶子节点
while(leftChild <= m_nHeapSize)
{
int bigChild = leftChild;
//取出两个孩子中大的孩子,然后将大的孩子节点数据上移
if(leftChild < m_nHeapSize && m_pHeapArray[leftChild-] < m_pHeapArray[leftChild])
{
//更新大孩子节点为右节点
bigChild = leftChild +;
}
//比较两个节点中大的孩子节点和取出的最后叶子节点,那个数值大
//如果最后的叶子节点数值大,那么可以跳出循环,因为找到了lastEle的合理位置
//剩余的树也是大根堆
if(m_pHeapArray[bigChild -] <= lastEle)
{
break;
}
//大节点数据上移
m_pHeapArray[currentIndex -] = m_pHeapArray[bigChild-];
//更新插入位置为当前大节点位置
currentIndex = bigChild;
leftChild = currentIndex *;
} m_pHeapArray[currentIndex-] = lastEle; return lastEle;
}

将一个无序的数组元素,变为大根堆

template <class T>
void maxHeap<T>::createMaxHeap(T * heapArray, int arrayLen)
{
//判断异常
if(arrayLen <= || heapArray == NULL)
{
return ;
} //从最后一个叶子节点的父节点开始,依次从该位置到根节点
//例如该位置为3,那么位置3,位置2,位置1的根节点的子树依次处理为大根堆 int currentIndex = arrayLen;
//父节点位置
int beginIndex = currentIndex/;
//依次处理,形成子树大根堆
for(int i = beginIndex; i > ; i--)
{
int rootEle = heapArray[i-]; int curNode = i;
int leftChild = i *;
while(leftChild <= arrayLen)
{
int bigChild = leftChild; int rootElePrint = heapArray[leftChild-];
int rightElePrint = heapArray[leftChild+ -] ; if(leftChild + <= arrayLen && heapArray[leftChild+ -] > heapArray[leftChild-])
{
bigChild = leftChild +;
} if(heapArray[bigChild -] <= rootEle )
{
break;
} heapArray[curNode -] = heapArray[bigChild -];
curNode = bigChild;
leftChild = curNode *;
} heapArray[curNode -] = rootEle;  }
}

源代码下载地址: http://download.csdn.net/detail/secondtonone1/9575112

整个代码就到这里吧,这是我的公众号,希望关注下:

poppo大根堆的原理与实现。的更多相关文章

  1. Java实现堆排序(大根堆)

    堆排序是一种树形选择排序方法,它的特点是:在排序的过程中,将array[0,...,n-1]看成是一颗完全二叉树的顺序存储结构,利用完全二叉树中双亲节点和孩子结点之间的内在关系,在当前无序区中选择关键 ...

  2. bzoj4919 [Lydsy1706月赛]大根堆

    Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切地说,你需要选择尽可能多的节点,满足大根堆的性质: ...

  3. bzoj 4919: [Lydsy六月月赛]大根堆

    Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切地说,你需要选择尽可能多的节点,满足大根堆的性质: ...

  4. BZOJ4919:[Lydsy1706月赛]大根堆(set启发式合并)

    Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切地说,你需要选择尽可能多的节点,满足大根堆的性质: ...

  5. 【BZOJ4919】[Lydsy六月月赛]大根堆 线段树合并

    [BZOJ4919][Lydsy六月月赛]大根堆 Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切 ...

  6. CJOJ 2482 【POI2000】促销活动(STL优先队列,大根堆,小根堆)

    CJOJ 2482 [POI2000]促销活动(STL优先队列,大根堆,小根堆) Description 促销活动遵守以下规则: 一个消费者 -- 想参加促销活动的消费者,在账单下记下他自己所付的费用 ...

  7. bzoj 4919 [Lydsy1706月赛]大根堆 set启发式合并+LIS

    4919: [Lydsy1706月赛]大根堆 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 599  Solved: 260[Submit][Stat ...

  8. java堆排序(大根堆)

    实现堆排序的算法思路是先创建堆,也就是从叶子节点起对每一层的孩子节点及其对应位置的父亲节点进行比较,较大的孩子节点替换较小的父亲节点,一级一级比较替换,就创建出了大根堆,小根堆反之.创建好大根堆以后, ...

  9. bzoj 1577: [Usaco2009 Feb]庙会捷运Fair Shuttle——小根堆+大根堆+贪心

    Description 公交车一共经过N(1<=N<=20000)个站点,从站点1一直驶到站点N.K(1<=K<=50000)群奶牛希望搭乘这辆公交车.第i群牛一共有Mi(1& ...

随机推荐

  1. 5个最优秀的微信小程序UI组件库

    开发微信小程序的过程中,选择一款好用的组件库,可以达到事半功倍的效果.自从微信小程序面世以来,不断有一些开源组件库出来,下面5款就是排名比较靠前,用户使用量与关注度比较高的小程序UI组件库.还没用到它 ...

  2. win2008 r2 开启TLS1.2

    Windows Registry Editor Version 5.00 [HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SecurityPr ...

  3. 软工第十二周个人PSP

    11.30--12.6本周例行报告 1.PSP(personal software process )个人软件过程. C(类别) C(内容) ST(开始时间) ET(结束时间) INT(间隔时间) Δ ...

  4. YQCB冲刺周第二天

    YQCB冲刺周第二天 1.实现用户记账的功能 2.实现用户头像的设置 3.实现个人设置的功能 遇到的问题: 记账的分类,数据库存取图片,页面跳转+超链接的使用 团队讨论的照片:             ...

  5. web项目页面加载时,下拉框有值

    1.我用的框架是springmvc和mybaitis 由于没有整个项目,直接就去请求的action  :http://localhost:8080/ytert/test/selectStoreType ...

  6. Alpha 冲刺9

    队名:日不落战队 安琪(队长) 今天完成的任务 协助开发手写涂鸦demo. okhttp学习第三弹. 明天的计划 协助开发语音存储demo. 还剩下的任务 个人信息数据get. 遇到的困难 困难:整理 ...

  7. 0527 SCRUM团队项目7.0

    Sprint回顾 让我们一次比一次做得更好.   1.回顾组织 主题:“我们怎样才能在下个sprint中做的更好?” 时间:设定为1至2个小时. 参与者:整个团队. 场所:能够在不受干扰的情况下讨论. ...

  8. Week2-作业1 -阅读《构建之法》

    第一章 在阅读第1.2.2节时,感受最深,记得开学初有老师就给我们分析过计算机专业和我们专业的区别,当时是给我们讲的是计算机科学注重的是理论,偏向于硬件方面,而软件工程则注重实践,偏向于软件方面.然很 ...

  9. Beta 阶段项目计划

    Beta 阶段项目计划 NewTeam 目标 实现用户数量的目标. 在多个平台发布 完成稳定运行.界面优雅的客户端 充分测试,避免发布后出现bug影响用户使用 及时更新开发文档 合理安排时间,避免和其 ...

  10. 201621123037 《Java程序设计》第3周学习总结

    #Week03-面向对象入门 1. 本周学习总结 初学面向对象,会学习到很多碎片化的概念与知识.尝试学会使用思维导图将这些碎片化的概念.知识点组织起来.请使用工具画出本周学习到的知识点及知识点之间的联 ...