D. Pair of Numbers
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Simon has an array a1, a2, ..., an, consisting of n positive integers. Today Simon asked you to find a pair of integers l, r (1 ≤ l ≤ r ≤ n), such that the following conditions hold:

  1. there is integer j (l ≤ j ≤ r), such that all integers al, al + 1, ..., ar are divisible by aj;
  2. value r - l takes the maximum value among all pairs for which condition 1 is true;

Help Simon, find the required pair of numbers (l, r). If there are multiple required pairs find all of them.

Input

The first line contains integer n (1 ≤ n ≤ 3·105).

The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 106).

Output

Print two integers in the first line — the number of required pairs and the maximum value of r - l. On the following line print all l values from optimal pairs in increasing order.

Examples
input
5
4 6 9 3 6
output
1 3
2
input
5
1 3 5 7 9
output
1 4
1
input
5
2 3 5 7 11
output
5 0
1 2 3 4 5
Note

In the first sample the pair of numbers is right, as numbers 6, 9, 3 are divisible by 3.

In the second sample all numbers are divisible by number 1.

In the third sample all numbers are prime, so conditions 1 and 2 are true only for pairs of numbers (1, 1), (2, 2), (3, 3), (4, 4), (5, 5).

题目大意:给出长度为n的序列a[i],要求找到所有满足下列两个条件的子序列a[l],a[l+1],…,a[r]的个数: 
1.存在l<=j<=r,使得a[j]是a[l],a[l+1],…,a[r]的最大公因数 
2.在所有满足1的子序列中取r-l最长的.

分析:一个序列满足要求当且仅当min = gcd,关键的问题就是如何快速地求出min和gcd,最好是O(1),直接ST表就可以了.接下来二分枚举区间.一般这种求有多少个区间的都是先固定一个左端点然后二分右端点,但是这道题中min和gcd的单调性相同,不能直接这样二分,题目要求最大长度,那么直接二分长度,再枚举起点判断即可.

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int maxn = ;
int n, f[maxn][], g[maxn][], ans, anss[], tot, cnt, t[], anscnt; int gcd(int a, int b)
{
if (!b)
return a;
return gcd(b, a % b);
} void init()
{
for (int j = ; j <= ; j++)
for (int i = ; i + ( << j) - <= n; i++)
{
f[i][j] = min(f[i][j - ], f[i + ( << (j - ))][j - ]);
g[i][j] = gcd(g[i][j - ], g[i + ( << (j - ))][j - ]);
}
} int geta(int l, int r)
{
int k = (int)((log(r - l + )) / log(2.0));
return min(f[l][k], f[r - ( << k) + ][k]);
} int getb(int l, int r)
{
int k = (int)((log(r - l + )) / log(2.0));
return gcd(g[l][k], g[r - ( << k) + ][k]);
} bool solve(int x)
{
cnt = ;
int tott = ;
memset(t, , sizeof(t));
for (int i = ; i + x <= n; i++)
if (geta(i, i + x) == getb(i, i + x))
{
cnt++;
t[++tott] = i;
}
if (cnt)
{
if (x > ans)
{
memcpy(anss, t, sizeof(t));
tot = tott;
anscnt = cnt;
}
return true;
}
return false;
} int main()
{
scanf("%d", &n);
for (int i = ; i <= n; i++)
{
scanf("%d", &f[i][]);
g[i][] = f[i][];
}
init();
int l = , r = n;
while (l <= r)
{
int mid = (l + r) >> ;
if (solve(mid))
{
l = mid + ;
ans = mid;
}
else
r = mid - ;
}
if (ans != )
{
printf("%d %d\n", anscnt, ans);
for (int i = ; i <= tot; i++)
printf("%d ", anss[i]);
}
else
{
printf("%d %d\n", n, ans);
for (int i = ; i <= n; i++)
printf("%d ", i);
} return ;
}

Codeforces 395 D.Pair of Numbers的更多相关文章

  1. Codeforces Round #209 (Div. 2) D. Pair of Numbers (模拟)

    D. Pair of Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  2. Codeforces 385C Bear and Prime Numbers(素数预处理)

    Codeforces 385C Bear and Prime Numbers 其实不是多值得记录的一道题,通过快速打素数表,再做前缀和的预处理,使查询的复杂度变为O(1). 但是,我在统计数组中元素出 ...

  3. Codeforces 385C Bear and Prime Numbers

    题目链接:Codeforces 385C Bear and Prime Numbers 这题告诉我仅仅有询问没有更新通常是不用线段树的.或者说还有比线段树更简单的方法. 用一个sum数组记录前n项和, ...

  4. cf359D Pair of Numbers

    Simon has an array a1, a2, ..., an, consisting of n positive integers. Today Simon asked you to find ...

  5. CodeForces 359D Pair of Numbers (暴力)

    题意:给定一个正整数数组,求最长的区间,使得该区间内存在一个元素,它能整除该区间的每个元素. 析:暴力每一个可能的区间,从数组的第一个元素开始考虑,向两边延伸,设延伸到的最左边的点为l, 最右边的点为 ...

  6. [codeforces] 359D Pair of Numbers

    原题 RMQ st表棵题 要想让一个区间里的所有数都可以整除其中一个数,那么他一定是这个区间内的最小值,并且同时是这个区间的gcd.然后这个问题就转化成了RMQ问题. 维护两个st表,分别是最小值和g ...

  7. Codeforces 359D Pair of Numbers | 二分+ST表+gcd

    题面: 给一个序列,求最长的合法区间,合法被定义为这个序列的gcd=区间最小值 输出最长合法区间个数,r-l长度 接下来输出每个合法区间的左端点 题解: 由于区间gcd满足单调性,所以我们可以二分区间 ...

  8. Educational Codeforces Round 2 A. Extract Numbers 模拟题

    A. Extract Numbers Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/600/pr ...

  9. CodeForces - 385C Bear and Prime Numbers (埃氏筛的美妙用法)

    Recently, the bear started studying data structures and faced the following problem. You are given a ...

随机推荐

  1. Tree Traversals Again(根据前序,中序,确定后序顺序)

    题目的大意是:进行一系列的操作push,pop.来确定后序遍历的顺序 An inorder binary tree traversal can be implemented in a non-recu ...

  2. 多用户在线FTP程序

    项目名:多用户在线FTP程序 一.需求 1.用户加密认证 2.允许同时多用户登录 3.每个用户有自己的家目录 ,且只能访问自己的家目录 4.对用户进行磁盘配额,每个用户的可用空间不同 5.允许用户在f ...

  3. 用js两张图片合并成一张图片

    JS和canvas的合成方式 function drawAndShareImage(){ var canvas = document.createElement("canvas") ...

  4. ES6的新特性(6)——正则的扩展

    正则的扩展 RegExp 构造函数 在 ES5 中,RegExp构造函数的参数有两种情况. 第一种情况是,参数是字符串,这时第二个参数表示正则表达式的修饰符(flag). var regex = ne ...

  5. python request 获取cookies value值的方法

    import requests res = requests.get(url) cookies = requests.utils.dict_from_cookiejar(res.cookies) pr ...

  6. 第九周个人PSP

    11.10--11.16本周例行报告 1.PSP(personal software process )个人软件过程. C(类别) C(内容) ST(开始时间) ET(结束时间) INT(间隔时间) ...

  7. c# 简单日志记录

    FileStream fs = new FileStream(System.AppDomain.CurrentDomain.BaseDirectory + "log.txt",Fi ...

  8. tensorboard入门

    Tensorboard tensorboard用以图形化展示我们的代码结构和图形化训练误差等,辅助优化程序 tensorboard实际上是tensorflow机器学习框架下的一个工具,需要先安装ten ...

  9. SGU 181 X-Sequence(一题比较水的求模找规律)

    E - X-Sequence Time Limit:500MS     Memory Limit:4096KB     64bit IO Format:%I64d & %I64u Submit ...

  10. 蜗牛慢慢爬 LeetCode 2. Add Two Numbers [Difficulty: Medium]

    题目 You are given two non-empty linked lists representing two non-negative integers. The digits are s ...