//
// #include <stdio.h> /*可以用回溯,但是我已经不太熟悉回溯了!!!!!!!!呜呜呜
*
*/
#include <iostream>
#include <math.h>
using namespace std;
int a[]={};
//bool b[100]={0},c[100]={0},d[100]={0};
int sum=;
void search(int k,int N);
int main(){
int N;
while(cin>>N && N!=) {
search(, N);
cout << sum<<endl;
sum=;
    for (int i = 0; i < N; ++i) {
a[i]=0; }
}
return ; }
void search(int k,int N){ if(k==N){ sum++;
return ;
}
int j;
int p;
/*
* 就纯递归,每次挨个比前面的
* 如果j==k说明前面都没有问题,可以赋值
*/
for(p=;p<N;p++) {
int ok=; for (j = ; j < k ; ++j) {
if (p == a[j] || abs(j - k) == abs(a[j] - p)) {
ok=;
break;
} }
if (ok ) {
a[k]=p;
search(k+,N); }
} }

递归-N皇后问题的更多相关文章

  1. C#数据结构与算法系列(十四):递归——八皇后问题(回溯算法)

    1.介绍 八皇后问题,是一个古老而著名的问题,是回溯算法的经典案例,该问题是国际西洋棋棋手马克斯.贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即 任意两个皇后都不能处 ...

  2. 递归---n皇后

    ---恢复内容开始--- #include "stdafx.h" #include <iostream> #include <fstream> //文件流 ...

  3. 个人项目Individual Project:n皇后问题

     源码的github链接: https://github.com/luhan420/test/tree/master 1.需求分析 在本次的课程设计中,用到的知识点主要有:类.函数.选择结构里的条件语 ...

  4. 递归实现n(经典的8皇后问题)皇后的问题

    问题描述:八皇后问题是一个以国际象棋为背景的问题:如何能够在8×8的国际象棋棋盘上放置八个皇后, 使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行.纵行或斜线上 ...

  5. 八皇后,回溯与递归(Python实现)

    八皇后问题是十九世纪著名的数学家高斯1850年提出 .以下为python语句的八皇后代码,摘自<Python基础教程>,代码相对于其他语言,来得短小且一次性可以打印出92种结果.同时可以扩 ...

  6. java实现八皇后问题(递归和循环两种方式)

    循环方式: package EightQueens;   public class EightQueensNotRecursive { private static final boolean AVA ...

  7. YTU 3013: 皇后问题(递归)

    3013: 皇后问题(递归) 时间限制: 1 Sec  内存限制: 128 MB 提交: 2  解决: 2 题目描述 编写一个函数,求解皇后问题:在n*n的方格棋盘上,放置n个皇后,要求每个皇后不同行 ...

  8. C#中八皇后问题的递归解法——N皇后

    百度测试部2015年10月份的面试题之——八皇后. 八皇后问题的介绍在此.以下是用递归思想实现八皇后-N皇后. 代码如下: using System;using System.Collections. ...

  9. 8皇后以及N皇后算法探究,回溯算法的JAVA实现,非递归,循环控制及其优化

    上两篇博客 8皇后以及N皇后算法探究,回溯算法的JAVA实现,递归方案 8皇后以及N皇后算法探究,回溯算法的JAVA实现,非递归,数据结构“栈”实现 研究了递归方法实现回溯,解决N皇后问题,下面我们来 ...

  10. 8皇后以及N皇后算法探究,回溯算法的JAVA实现,递归方案

    八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同 ...

随机推荐

  1. Kubernetes 两步验证 - 使用 Serverless 实现动态准入控制

    作者:CODING - 王炜 1. 背景 如果对 Kubernetes 集群安全特别关注,那么我们可能想要实现这些需求: 如何实现 Kubernetes 集群的两步验证,除了集群凭据,还需要提供一次性 ...

  2. 1.记我的第一次python爬虫爬取网页视频

    It is my first time to public some notes on this platform, and I just want to improve myself by reco ...

  3. java简介&&变量

    Day01 简介 数据 1.数据大体分为两类:基本类型和引用类型 2.基本类型的数据分为四类八种,四类为整型,浮点,布尔,字符 3.Long类型的数据超过int范围要在之后面加个L,不加L是整型会进行 ...

  4. docker 容器中 apt-get install 软件时,提示无法定位软件包

    [解决] 执行 apt-get update 然后再进行安装,即可. (完)

  5. openstack cinder-backup流程与源码分析

    在现在的云计算大数据环境下,备份容灾已经变成了一个炙手可热的话题,今天,和大家一起分享一下openstack是怎么做灾备的. [首先介绍快照] snapshot可以为volume创建快照,快照中保存了 ...

  6. box-shadow,text-shadow

    box-shadow:inset 30px 40px 20px #f00; 如上实例,总共五个参数,其中第一个代表阴影是向内阴影还是向外阴影,第二个参数代表向右(从左向右)的偏移量,第三个参数代表向下 ...

  7. Apache Hudi重磅特性解读之全局索引

    1. 摘要 Hudi表允许多种类型操作,包括非常常用的upsert,当然为支持upsert,Hudi依赖索引机制来定位记录在哪些文件中. 当前,Hudi支持分区和非分区的数据集.分区数据集是将一组文件 ...

  8. [USACO16OPEN]248 G——区间dp

    [USACO16OPEN]248 G 题目描述 Bessie likes downloading games to play on her cell phone, even though she do ...

  9. POI2014 FAR-FarmCraft

    [Farm Craft] [题目描述] mhy住在一棵有n个点的树的1号结点上,每个结点上都有一个妹子. mhy从自己家出发,去给每一个妹子都送一台电脑,每个妹子拿到电脑后就会开始安装zhx牌杀毒软件 ...

  10. Javascript安全编程规范

    命名 1.原则——编码格式UTF-8,根据功能为变量与方法命名(尽量不缩写) 2.类——构造函数/类 使用驼峰命名法,且首字母大写 3.方法——动词.动宾结构,使用驼峰命名法,首字母小写 例如:get ...