//
// #include <stdio.h> /*可以用回溯,但是我已经不太熟悉回溯了!!!!!!!!呜呜呜
*
*/
#include <iostream>
#include <math.h>
using namespace std;
int a[]={};
//bool b[100]={0},c[100]={0},d[100]={0};
int sum=;
void search(int k,int N);
int main(){
int N;
while(cin>>N && N!=) {
search(, N);
cout << sum<<endl;
sum=;
    for (int i = 0; i < N; ++i) {
a[i]=0; }
}
return ; }
void search(int k,int N){ if(k==N){ sum++;
return ;
}
int j;
int p;
/*
* 就纯递归,每次挨个比前面的
* 如果j==k说明前面都没有问题,可以赋值
*/
for(p=;p<N;p++) {
int ok=; for (j = ; j < k ; ++j) {
if (p == a[j] || abs(j - k) == abs(a[j] - p)) {
ok=;
break;
} }
if (ok ) {
a[k]=p;
search(k+,N); }
} }

递归-N皇后问题的更多相关文章

  1. C#数据结构与算法系列(十四):递归——八皇后问题(回溯算法)

    1.介绍 八皇后问题,是一个古老而著名的问题,是回溯算法的经典案例,该问题是国际西洋棋棋手马克斯.贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即 任意两个皇后都不能处 ...

  2. 递归---n皇后

    ---恢复内容开始--- #include "stdafx.h" #include <iostream> #include <fstream> //文件流 ...

  3. 个人项目Individual Project:n皇后问题

     源码的github链接: https://github.com/luhan420/test/tree/master 1.需求分析 在本次的课程设计中,用到的知识点主要有:类.函数.选择结构里的条件语 ...

  4. 递归实现n(经典的8皇后问题)皇后的问题

    问题描述:八皇后问题是一个以国际象棋为背景的问题:如何能够在8×8的国际象棋棋盘上放置八个皇后, 使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行.纵行或斜线上 ...

  5. 八皇后,回溯与递归(Python实现)

    八皇后问题是十九世纪著名的数学家高斯1850年提出 .以下为python语句的八皇后代码,摘自<Python基础教程>,代码相对于其他语言,来得短小且一次性可以打印出92种结果.同时可以扩 ...

  6. java实现八皇后问题(递归和循环两种方式)

    循环方式: package EightQueens;   public class EightQueensNotRecursive { private static final boolean AVA ...

  7. YTU 3013: 皇后问题(递归)

    3013: 皇后问题(递归) 时间限制: 1 Sec  内存限制: 128 MB 提交: 2  解决: 2 题目描述 编写一个函数,求解皇后问题:在n*n的方格棋盘上,放置n个皇后,要求每个皇后不同行 ...

  8. C#中八皇后问题的递归解法——N皇后

    百度测试部2015年10月份的面试题之——八皇后. 八皇后问题的介绍在此.以下是用递归思想实现八皇后-N皇后. 代码如下: using System;using System.Collections. ...

  9. 8皇后以及N皇后算法探究,回溯算法的JAVA实现,非递归,循环控制及其优化

    上两篇博客 8皇后以及N皇后算法探究,回溯算法的JAVA实现,递归方案 8皇后以及N皇后算法探究,回溯算法的JAVA实现,非递归,数据结构“栈”实现 研究了递归方法实现回溯,解决N皇后问题,下面我们来 ...

  10. 8皇后以及N皇后算法探究,回溯算法的JAVA实现,递归方案

    八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同 ...

随机推荐

  1. [Debian]查看进程、终止进程

    # jobs -l [1]+ 115 Running nohup /usr/local/bin/dotnet/dotnet/dotnet /usr/share/nginx/asp/publish/Wi ...

  2. Python-使用百度文字识别API实现的文字识别工具

    import requests import base64 import keyboard import mouse import time import os from PIL import Ima ...

  3. python使用selenium和requests.session登录抓取

    # Author:song from selenium import webdriver from selenium.webdriver.common.keys import Keys from re ...

  4. python 三维散点插值 griddata

    #三维点插值#在三维空间中,利用实际点的值推算出网格点的值import numpy as np point_grid =np.array([[0.0,0.0,0.0],[0.4,0.4,0.4],[0 ...

  5. flask 源码专题(十一):LocalStack和Local对象实现栈的管理

    目录 04 LocalStack和Local对象实现栈的管理 1.源码入口 1. flask源码关于local的实现 2. flask源码关于localstack的实现 3. 总结 04 LocalS ...

  6. 数据可视化之powerBI入门(十)认识Power BI的核心概念:度量值

    https://zhuanlan.zhihu.com/p/64150720 本文学习PowerBI最重要的概念:度量值 初学Power BI一般都会对度量值比较困惑,毕竟对长期接触Excel的人来说, ...

  7. 机器学习实战基础(三十六):随机森林 (三)之 RandomForestClassifier 之 重要属性和接口

    重要属性和接口 至此,我们已经讲完了所有随机森林中的重要参数,为大家复习了一下决策树的参数,并通过n_estimators,random_state,boostrap和oob_score这四个参数帮助 ...

  8. javascript基础(二): 操作BOM对象(重点)

    浏览器介绍 javascript和浏览器关系?BOM:浏览器对象模型 IE6~11 Chrome Safari FireFox Opera 三方 QQ浏览器 360浏览器 window window代 ...

  9. tensorflow实现lstm中遇到的函数记录

    函数一:initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=123) tf.random_uniform_initializer 参数: ...

  10. MVC + EFCore 项目实战 - 数仓管理系统4 – 需求分解

    上次课程我们完成了项目基本的UI风格配置. 现在就开始进入我们的需求开发,我们先捋一下需求. 一.总体需求说明 项目背景第一篇文章已有介绍,我们回顾一下. 这是一个数据管理"工具类" ...