LINK:Greater and Greater

确实没能想到做法。

考虑利用bitset解决问题。

做法是:逐位判断每一位是否合法 第一位 就是 bitset上所有大于\(b_1\)的位置 置为1.

那么右移一位就得到下次判断的东西 然后 处理处相应>=\(b_2\)的东西 然后再&一下。

这样复杂度为\(\frac{nm}{w}\) w取64 所以可以通过.

不过值得一提的是 预处理的那个东西不能全部预处理出来 因为这样做 空间复杂度是\(\frac{nm}{w}\)的会爆掉。

直接维护\(ans_i\)表示以i开头是否合法 那么对于每次一个p位置的判定 所有为1的位置得到之后我们能反推出以某个位置为起点的是合法的 &一下即可。

这样就不需要那么大空间了。

code
//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 10000000000000000ll
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i<n;++i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-4
#define sq sqrt
#define S second
#define F first
#define mod 1000000007
#define V vector<int>
#define l(x) t[x].l
#define r(x) t[x].r
#define sum(x) t[x].sum
#define cnt(x) t[x].cnt
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getc();}
return x*f;
}
const int MAXN=150010,maxn=40010;
bitset<MAXN>ans,w;
int a[MAXN],b[maxn];
int c[MAXN],p[MAXN];
int n,m;
inline int cmp1(int x,int y){return a[x]>a[y];}
inline int cmp2(int x,int y){return b[x]>b[y];}
int main()
{
freopen("1.in","r",stdin);
get(n);get(m);
rep(1,n,i)get(a[i]),p[i]=i;
rep(1,m,i)get(b[i]),c[i]=i;
sort(p+1,p+1+n,cmp1);
sort(c+1,c+1+m,cmp2);
int flag=1;
ans.set();
rep(1,m,i)
{
while(a[p[flag]]>=b[c[i]]&&flag<=n)
{
w[p[flag]]=1;
++flag;
}
ans=ans&(w>>c[i]-1);
}
put(ans.count());return 0;
}

2020牛客暑假多校训练营 第二场 G Greater and Greater bitset的更多相关文章

  1. 2020牛客暑假多校训练营 第二场 H Happy Triangle set 线段树 分类讨论

    LINK:Happy Triangle 这道题很容易. 容易想到 a+b<x a<x<b x<a<b 其中等于的情况在第一个和第三个之中判一下即可. 前面两个容易想到se ...

  2. 2020牛客暑假多校训练营 第二场 E Exclusive OR FWT

    LINK:Exclusive OR 没做出 原因前面几篇说过了. 根据线性基的知识容易推出 不超过\(w=log Mx\)个数字即可拼出最大值 其中Mx为值域. 那么考虑w+2个数字显然也为最大值.. ...

  3. 2020牛客暑期多校训练营 第二场 K Keyboard Free 积分 期望 数学

    LINK:Keyboard Free 我要是会正经的做法 就有鬼了. 我的数学水平没那么高. 三个同心圆 三个动点 求围成三角形面积的期望. 不会告辞. 其实可以\(n^2\)枚举角度然后算出面积 近 ...

  4. 2020牛客暑期多校训练营 第二场 J Just Shuffle 置换 群论

    LINK:Just Shuffle 比较怂群论 因为没怎么学过 置换也是刚理解. 这道题是 已知一个置换\(A\)求一个置换P 两个置换的关键为\(P^k=A\) 且k是一个大质数. 做法是李指导教我 ...

  5. 2020牛客暑期多校训练营 第二场 I Interval 最大流 最小割 平面图对偶图转最短路

    LINK:Interval 赛时连题目都没看. 观察n的范围不大不小 而且建图明显 考虑跑最大流最小割. 图有点稠密dinic不太行. 一个常见的trick就是对偶图转最短路. 建图有点复杂 不过建完 ...

  6. 2020牛客暑期多校训练营 第二场 C Cover the Tree 构造 贪心

    LINK:Cover the Tree 最受挫的是这道题,以为很简单 当时什么都想不清楚. 先胡了一个树的直径乱搞的贪心 一直过不去.后来意识到这类似于最经典长链剖分优化贪心的做法 然后那个是求最大值 ...

  7. 2020牛客暑期多校训练营 第二场 B Boundary 计算几何 圆 已知三点求圆心

    LINK:Boundary 计算几何确实是弱项 因为好多东西都不太会求 没有到很精通的地步. 做法很多,先说官方题解 其实就是枚举一个点 P 然后可以发现 再枚举一个点 然后再判断有多少个点在圆上显然 ...

  8. 2020牛客暑期多校训练营 第二场 A All with Pairs 字符串hash KMP

    LINK:All with Pairs 那天下午打这个东西的时候状态极差 推这个东西都推了1个多小时 (比赛是中午考试的我很困 没睡觉直接开肝果然不爽 一开始看错匹配的位置了 以为是\(1-l\)和\ ...

  9. 2019牛客暑期多校训练营(第二场) H-Second Large Rectangle(单调栈)

    题意:给出由01组成的矩阵,求求全是1的次大子矩阵. 思路: 单调栈 全是1的最大子矩阵的变形,不能直接把所有的面积存起来然后排序取第二大的,因为次大子矩阵可能在最大子矩阵里面,比如: 1 0 0 1 ...

随机推荐

  1. show me bug

    比较版本号 前者大返回1 后者大返回-1 两者一样大返回0 #include <iostream> #include<string> using namespace std; ...

  2. django 本地项目部署uwsgi 以及云服务器部署 uwsgi+Nginx+Docker+MySQL主从

    一 .django 本地项目部署uwsgi 1 本地部署项目 uwsgi安装测试 通过uwsgi 进行简单部署 安装uwsgi命令:pip install uwsgi -i http://pypi.d ...

  3. 微信小程序开发中遇到的几个小问题

    本地图片不显示,开发工具运行是没问题的,但真机调试却显示不了 item.img = '/goods/img/图片.png' <image src="{{item.img}}" ...

  4. java 面向对象(三十一):异常(四) 自定义异常类

    如何自定义一个异常类?/* * 如何自定义异常类? * 1. 继承于现的异常结构:RuntimeException .Exception * 2. 提供全局常量:serialVersionUID * ...

  5. java 面向对象(十八):包装类的使用

    1.为什么要有包装类(或封装类)为了使基本数据类型的变量具有类的特征,引入包装类. 2.基本数据类型与对应的包装类: 3.需要掌握的类型间的转换:(基本数据类型.包装类.String) 简易版:基本数 ...

  6. 迎难而上ArrayList,源码分析走一波

    先看再点赞,给自己一点思考的时间,思考过后请毫不犹豫微信搜索[沉默王二],关注这个长发飘飘却靠才华苟且的程序员.本文 GitHub github.com/itwanger 已收录,里面还有技术大佬整理 ...

  7. Mariadb之主从复制的读写分离

    首先我们来回顾下代理的概念,所谓代理就是指的是一端面向客户端,另外一端面向服务端,代理客户端访问服务端,我们把这种代理叫正向代理:代理服务端响应客户端我们叫做反向代理,这个我们在之前nginx系列博客 ...

  8. 【测试工具】这些APP实用测试工具,不知道你就out了!

    本期,我将给大家介绍14款实用的测试工具,希望能够帮到大家!(建议收藏) UI自动化测试工具 1. uiautomator2 Github地址:https://github.com/openatx/u ...

  9. Python Ethical Hacking - DNS Spoofing

    What is DNS Spoofing Sniff the DNSRR packet and show on the terminal. #!/usr/bin/env python from net ...

  10. [CISCN2019 华东南赛区]Double Secret

    0x01 进入页面如下 提示我们寻找secret,再加上题目的提示,猜测这里有secret页面,我们尝试访问,结果如下 根据它这个话的意思,是让我们传参,然后它会给你加密,我们试一下 发现输入的1变成 ...