LINK:Greater and Greater

确实没能想到做法。

考虑利用bitset解决问题。

做法是:逐位判断每一位是否合法 第一位 就是 bitset上所有大于\(b_1\)的位置 置为1.

那么右移一位就得到下次判断的东西 然后 处理处相应>=\(b_2\)的东西 然后再&一下。

这样复杂度为\(\frac{nm}{w}\) w取64 所以可以通过.

不过值得一提的是 预处理的那个东西不能全部预处理出来 因为这样做 空间复杂度是\(\frac{nm}{w}\)的会爆掉。

直接维护\(ans_i\)表示以i开头是否合法 那么对于每次一个p位置的判定 所有为1的位置得到之后我们能反推出以某个位置为起点的是合法的 &一下即可。

这样就不需要那么大空间了。

code
//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 10000000000000000ll
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i<n;++i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-4
#define sq sqrt
#define S second
#define F first
#define mod 1000000007
#define V vector<int>
#define l(x) t[x].l
#define r(x) t[x].r
#define sum(x) t[x].sum
#define cnt(x) t[x].cnt
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getc();}
return x*f;
}
const int MAXN=150010,maxn=40010;
bitset<MAXN>ans,w;
int a[MAXN],b[maxn];
int c[MAXN],p[MAXN];
int n,m;
inline int cmp1(int x,int y){return a[x]>a[y];}
inline int cmp2(int x,int y){return b[x]>b[y];}
int main()
{
freopen("1.in","r",stdin);
get(n);get(m);
rep(1,n,i)get(a[i]),p[i]=i;
rep(1,m,i)get(b[i]),c[i]=i;
sort(p+1,p+1+n,cmp1);
sort(c+1,c+1+m,cmp2);
int flag=1;
ans.set();
rep(1,m,i)
{
while(a[p[flag]]>=b[c[i]]&&flag<=n)
{
w[p[flag]]=1;
++flag;
}
ans=ans&(w>>c[i]-1);
}
put(ans.count());return 0;
}

2020牛客暑假多校训练营 第二场 G Greater and Greater bitset的更多相关文章

  1. 2020牛客暑假多校训练营 第二场 H Happy Triangle set 线段树 分类讨论

    LINK:Happy Triangle 这道题很容易. 容易想到 a+b<x a<x<b x<a<b 其中等于的情况在第一个和第三个之中判一下即可. 前面两个容易想到se ...

  2. 2020牛客暑假多校训练营 第二场 E Exclusive OR FWT

    LINK:Exclusive OR 没做出 原因前面几篇说过了. 根据线性基的知识容易推出 不超过\(w=log Mx\)个数字即可拼出最大值 其中Mx为值域. 那么考虑w+2个数字显然也为最大值.. ...

  3. 2020牛客暑期多校训练营 第二场 K Keyboard Free 积分 期望 数学

    LINK:Keyboard Free 我要是会正经的做法 就有鬼了. 我的数学水平没那么高. 三个同心圆 三个动点 求围成三角形面积的期望. 不会告辞. 其实可以\(n^2\)枚举角度然后算出面积 近 ...

  4. 2020牛客暑期多校训练营 第二场 J Just Shuffle 置换 群论

    LINK:Just Shuffle 比较怂群论 因为没怎么学过 置换也是刚理解. 这道题是 已知一个置换\(A\)求一个置换P 两个置换的关键为\(P^k=A\) 且k是一个大质数. 做法是李指导教我 ...

  5. 2020牛客暑期多校训练营 第二场 I Interval 最大流 最小割 平面图对偶图转最短路

    LINK:Interval 赛时连题目都没看. 观察n的范围不大不小 而且建图明显 考虑跑最大流最小割. 图有点稠密dinic不太行. 一个常见的trick就是对偶图转最短路. 建图有点复杂 不过建完 ...

  6. 2020牛客暑期多校训练营 第二场 C Cover the Tree 构造 贪心

    LINK:Cover the Tree 最受挫的是这道题,以为很简单 当时什么都想不清楚. 先胡了一个树的直径乱搞的贪心 一直过不去.后来意识到这类似于最经典长链剖分优化贪心的做法 然后那个是求最大值 ...

  7. 2020牛客暑期多校训练营 第二场 B Boundary 计算几何 圆 已知三点求圆心

    LINK:Boundary 计算几何确实是弱项 因为好多东西都不太会求 没有到很精通的地步. 做法很多,先说官方题解 其实就是枚举一个点 P 然后可以发现 再枚举一个点 然后再判断有多少个点在圆上显然 ...

  8. 2020牛客暑期多校训练营 第二场 A All with Pairs 字符串hash KMP

    LINK:All with Pairs 那天下午打这个东西的时候状态极差 推这个东西都推了1个多小时 (比赛是中午考试的我很困 没睡觉直接开肝果然不爽 一开始看错匹配的位置了 以为是\(1-l\)和\ ...

  9. 2019牛客暑期多校训练营(第二场) H-Second Large Rectangle(单调栈)

    题意:给出由01组成的矩阵,求求全是1的次大子矩阵. 思路: 单调栈 全是1的最大子矩阵的变形,不能直接把所有的面积存起来然后排序取第二大的,因为次大子矩阵可能在最大子矩阵里面,比如: 1 0 0 1 ...

随机推荐

  1. 精简CSS代码,提高代码的可读性和加载速度

    前言 提高网站整体加载速度的一个重要手段就是提高代码文件的网络传输速度.之前提到过,所有的代码文件都应该是经过压缩了的,这可提高网络传输速度,提高性能.除了压缩代码之外,精简代码也是一种减小代码文件大 ...

  2. HTML5(八)Web Workers

    HTML 5 Web Workers web worker 是运行在后台的 JavaScript,不会影响页面的性能. 什么是 Web Worker? 当在 HTML 页面中执行脚本时,页面的状态是不 ...

  3. mongodb安装与mongo vue的使用

    首先,下载mongodb,然后安装 http://downloads.mongodb.com/win32/mongodb-win32-x86_64-enterprise-windows-64-2.6. ...

  4. cin cout 的优化(神优化)外号:神读入

    在比赛里,经常出现数据集超大造成 cin TLE的情况.这时候大部分人(包括原来我也是)认为这是cin的效率不及scanf的错,甚至还上升到C语言和C++语言的执行效率层面的无聊争论.其实像上文所说, ...

  5. Canonical通过Flutter启用Linux桌面应用程序支持

    子标题:Ubuntu团队为所有Linux发行版上的Flutter应用程序制作了一个新的基于GTK +的主机. 此文翻译自:https://medium.com/flutter/announcing-f ...

  6. 【Nginx】实现负载均衡、限流、缓存、黑白名单和灰度发布,这是最全的一篇了!

    写在前面 在<[高并发]面试官问我如何使用Nginx实现限流,我如此回答轻松拿到了Offer!>一文中,我们主要介绍了如何使用Nginx进行限流,以避免系统被大流量压垮.除此之外,Ngin ...

  7. scala 数据结构(七 ):集 Set

    集是不重复元素的结合.集不保留顺序,默认是以哈希集实现 默认情况下,Scala 使用的是不可变集合,如果你想使用可变集合,需要引用 scala.collection.mutable.Set 包 1 集 ...

  8. web 部署专题(八):Nginx 反向代理中cookie相关问题

    问题3:认证问题 Domino服务器中,通过写了一些接口代码,提供RESTful的服务,来对手机端进行提供服务.但是由于原来的环境,没有SSO,而且不通过认证,没法访问到Domino里面的接口代码. ...

  9. mysql子查询习题98

    #1.查询工资最低的员工信息:last name, salary SELECT last_name, salary FROM employees WHERE salary = ( SELECT MIN ...

  10. Unity - NavMeshAgent-GetStart

    Select scene geometry that should affect the navigation – walkable surfaces and obstacles. Check Nav ...