有一个长度为m的字符串,由n种小写字母组成。对应的n种字母在这个字符串加上或者减去都有相应的费用,现在要将这个字符串变成回文串,问最低消费是多少?

Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents are currently a single string with length M (1 ≤ M ≤ 2,000) characters drawn from an alphabet of N (1 ≤ N ≤ 26) different symbols (namely, the lower-case roman alphabet).

Cows, being the mischievous creatures they are, sometimes try to spoof the system by walking backwards. While a cow whose ID is "abcba" would read the same no matter which direction the she walks, a cow with the ID "abcb" can potentially register as two different IDs ("abcb" and "bcba").

FJ would like to change the cows's ID tags so they read the same no matter which direction the cow walks by. For example, "abcb" can be changed by adding "a" at the end to form "abcba" so that the ID is palindromic (reads the same forwards and backwards). Some other ways to change the ID to be palindromic are include adding the three letters "bcb" to the begining to yield the ID "bcbabcb" or removing the letter "a" to yield the ID "bcb". One can add or remove characters at any location in the string yielding a string longer or shorter than the original string.

Unfortunately as the ID tags are electronic, each character insertion or deletion has a cost (0 ≤ cost ≤ 10,000) which varies depending on exactly which character value to be added or deleted. Given the content of a cow's ID tag and the cost of inserting or deleting each of the alphabet's characters, find the minimum cost to change the ID tag so it satisfies FJ's requirements. An empty ID tag is considered to satisfy the requirements of reading the same forward and backward. Only letters with associated costs can be added to a string.

Input

Line 1: Two space-separated integers: N and M
Line 2: This line contains exactly M characters which constitute the initial ID string
Lines 3..N+2: Each line contains three space-separated entities: a character of the input alphabet and two integers which are respectively the cost of adding and deleting that character.

Output

Line 1: A single line with a single integer that is the minimum cost to change the given name tag.

Sample Input

  1. 3 4
  2. abcb
  3. a 1000 1100
  4. b 350 700
  5. c 200 800

Sample Output

  1. 900

Hint

If we insert an "a" on the end to get "abcba", the cost would be 1000. If we delete the "a" on the beginning to get "bcb", the cost would be 1100. If we insert "bcb" at the begining of the string, the cost would be 350 + 200 + 350 = 900, which is the minimum.
增加或者减少最少字母使其变为回文串是一个经典的dp问题,可转换为LCS求解,显然这是一个区间dp问题;

定义dp [ i ] [ j ] 为区间 i 到 j 变成回文的最小代价。

那么对于dp[i][j]三种情况

首先:对于一个串如果s[i]==s[j],那么dp[i][j]=dp[i+1][j-1];

其次:如果dp[i+1][j]是回文串,那么dp[i][j]=dp[i+1][j]+min(add[i],del[i]);

最后,如果dp[i][j-1]是回文串,那么dp[i][j]=dp[i][j-1] + min(add[j],del[j]);

 
  1. #include<cstdio>
  2. #include<algorithm>
  3. #include<cstring>
  4. #include<cmath>
  5. #include<string>
  6. #include<iostream>
  7. using namespace std;
  8. const int inf =0x3f3f3f3f;
  9. int dp[2005][2005],x[256],i,add,del,n,m;
  10. int main()
  11. {
  12. char s[2005],c;
  13. scanf("%d%d",&n,&m);
  14. scanf("%s",s+1);
  15. for(i=1;i<=n;i++)
  16. {
  17. getchar();//吸收回车
  18. scanf("%c %d%d",&c,&add,&del);
  19. x[c]=min(add,del);//对于拼凑回文串,加上字符和减去字符是一样的
  20. } //所以这里选择成本小的途径
  21. int k;
  22. for(k=1;k<m;k++)//k次搜索,最差一个字母构成回文==每次删掉一个字母
  23. {
  24. for(i=1;i<=m-k;i++)//从1到m-k的长度
  25. {
  26. int j=i+k;
  27. dp[i][j]=inf;//初始化
  28. dp[i][j]=min(dp[i+1][j]+x[s[i]],dp[i][j-1]+x[s[j]]);
  29. if(s[i]==s[j])
  30. dp[i][j]=min(dp[i][j],dp[i+1][j-1]);
  31. }
  32. }
  33. printf("%d\n",dp[1][m]);//从1到m构成回文串的最小花费
  34. }

F - Cheapest Palindrome的更多相关文章

  1. POJ 题目3280 Cheapest Palindrome(区间DP)

    Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7148   Accepted: 34 ...

  2. 【POJ】3280 Cheapest Palindrome(区间dp)

    Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10943   Accepted: 5 ...

  3. Cheapest Palindrome(区间DP)

    个人心得:动态规划真的是够烦人的,这题好不容易写出了转移方程,结果超时,然后看题解,为什么这些题目都是这样一步一步的 递推,在我看来就是懵逼的状态,还有那个背包也是,硬是从最大的V一直到0,而这个就是 ...

  4. POJ3280 Cheapest Palindrome 【DP】

    Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6013   Accepted: 29 ...

  5. 【POJ - 3280】Cheapest Palindrome(区间dp)

    Cheapest Palindrome 直接翻译了 Descriptions 给定一个字符串S,字符串S的长度为M(M≤2000),字符串S所含有的字符的种类的数量为N(N≤26),然后给定这N种字符 ...

  6. [USACO07OPEN]便宜的回文Cheapest Palindrome

    字串S长M,由N个小写字母构成.欲通过增删字母将其变为回文串,增删特定字母花费不同,求最小花费.        题目描述见上            显然 这是一道区间DP 从两头DP,枚举长度啥的很套 ...

  7. Cheapest Palindrome [POJ3280] [区间DP] [经典]

    一句话题意:每个字母添加和删除都相应代价(可以任意位置 增加/删除),求把原串变成回文串的最小代价 Description 保持对所有奶牛的跟踪是一项棘手的任务,因此农场主约翰已经安装了一个系统来实现 ...

  8. [luoguP2890] [USACO07OPEN]便宜的回文Cheapest Palindrome(DP)

    传送门 f[i][j] 表示区间 i 到 j 变为回文串所需最小费用 1.s[i] == s[j] f[i][j] = f[i + 1][j - 1] 2.s[i] != s[j] f[i][j] = ...

  9. POJ 3280 Cheapest Palindrome DP题解

    看到Palindrome的题目.首先想到的应该是中心问题,然后从中心出发,思考怎样解决. DP问题通常是从更加小的问题转化到更加大的问题.然后是从地往上 bottom up地计算答案的. 能得出状态转 ...

随机推荐

  1. keycloak集群化的思考

    目录 简介 keycloak中的集群 load balancing负载均衡 暴露客户端IP地址 sticky sessions 和 非sticky sessions shared databases ...

  2. Java开发手册之安全规约

    1.用户敏感数据禁止直接展示,必须对展示数据进行脱敏.例如手机号.银行卡号等,中间要用*隐藏. 2.发贴.评论.发送即时消息等用户生成内容的场景必须实现防刷.文本内容违禁词过滤等风控策略,一般是用验证 ...

  3. 【Oracle】10g 11g下载路径

    现在直接点击不能下载了 要经过oracle许可才可以下载 如果嫌麻烦可以用迅雷直接下载密码是这个 一般不会动了 大家也不用帮我找回密码了 每次都改 也很麻烦的用迅雷下就不用密码了 下载也不会卡到最后 ...

  4. kubernets之节点和网络的安全保障策略

    一  在pod中使用宿主节点的命名空间 1.1  在pod中使用宿主的网络命名空间 [root@node01 Chapter13]# cat pod-with-host-network.yml api ...

  5. oracle绑定变量测试及性能对比

    1.创建测试数据 2.查看cursor_sharing的值 SQL> show parameter cursor_sharing; NAME TYPE VALUE --------------- ...

  6. YARN运行流程

  7. 编译Nacos,解决No Server available 以及 failed to req API__nacos_v1_ns_instance after all servers

    问题描述:如图,显示没有服务可用 仔细看控制台,看到上面Error部分,相关参数没有读取到配置信息,那么配置信息这块似乎是有问题,赶紧看看IDE对配置信息的扫描情况: 可以看到有信息了,但是报错:No ...

  8. 公共错误码 - 支付宝开放平台 https://opendocs.alipay.com/open/common/105806

    公共错误码 - 支付宝开放平台 https://opendocs.alipay.com/open/common/105806

  9. Main event loop

    https://developer.apple.com/library/archive/documentation/General/Conceptual/Devpedia-CocoaApp/MainE ...

  10. UserControl和CustomControl两者区别

    UserControl 将多个WPF控件(例如:TextBox,TextBlock,Button)进行组合成一个可复用的控件组: 由XAML和Code Behind代码组成: 不支持样式/模板重写: ...