有一个长度为m的字符串,由n种小写字母组成。对应的n种字母在这个字符串加上或者减去都有相应的费用,现在要将这个字符串变成回文串,问最低消费是多少?

Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents are currently a single string with length M (1 ≤ M ≤ 2,000) characters drawn from an alphabet of N (1 ≤ N ≤ 26) different symbols (namely, the lower-case roman alphabet).

Cows, being the mischievous creatures they are, sometimes try to spoof the system by walking backwards. While a cow whose ID is "abcba" would read the same no matter which direction the she walks, a cow with the ID "abcb" can potentially register as two different IDs ("abcb" and "bcba").

FJ would like to change the cows's ID tags so they read the same no matter which direction the cow walks by. For example, "abcb" can be changed by adding "a" at the end to form "abcba" so that the ID is palindromic (reads the same forwards and backwards). Some other ways to change the ID to be palindromic are include adding the three letters "bcb" to the begining to yield the ID "bcbabcb" or removing the letter "a" to yield the ID "bcb". One can add or remove characters at any location in the string yielding a string longer or shorter than the original string.

Unfortunately as the ID tags are electronic, each character insertion or deletion has a cost (0 ≤ cost ≤ 10,000) which varies depending on exactly which character value to be added or deleted. Given the content of a cow's ID tag and the cost of inserting or deleting each of the alphabet's characters, find the minimum cost to change the ID tag so it satisfies FJ's requirements. An empty ID tag is considered to satisfy the requirements of reading the same forward and backward. Only letters with associated costs can be added to a string.

Input

Line 1: Two space-separated integers: N and M
Line 2: This line contains exactly M characters which constitute the initial ID string
Lines 3..N+2: Each line contains three space-separated entities: a character of the input alphabet and two integers which are respectively the cost of adding and deleting that character.

Output

Line 1: A single line with a single integer that is the minimum cost to change the given name tag.

Sample Input

3 4
abcb
a 1000 1100
b 350 700
c 200 800

Sample Output

900

Hint

If we insert an "a" on the end to get "abcba", the cost would be 1000. If we delete the "a" on the beginning to get "bcb", the cost would be 1100. If we insert "bcb" at the begining of the string, the cost would be 350 + 200 + 350 = 900, which is the minimum.
增加或者减少最少字母使其变为回文串是一个经典的dp问题,可转换为LCS求解,显然这是一个区间dp问题;

定义dp [ i ] [ j ] 为区间 i 到 j 变成回文的最小代价。

那么对于dp[i][j]三种情况

首先:对于一个串如果s[i]==s[j],那么dp[i][j]=dp[i+1][j-1];

其次:如果dp[i+1][j]是回文串,那么dp[i][j]=dp[i+1][j]+min(add[i],del[i]);

最后,如果dp[i][j-1]是回文串,那么dp[i][j]=dp[i][j-1] + min(add[j],del[j]);

 
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<iostream>
using namespace std;
const int inf =0x3f3f3f3f;
int dp[2005][2005],x[256],i,add,del,n,m;
int main()
{
char s[2005],c;
scanf("%d%d",&n,&m);
scanf("%s",s+1);
for(i=1;i<=n;i++)
{
getchar();//吸收回车
scanf("%c %d%d",&c,&add,&del);
x[c]=min(add,del);//对于拼凑回文串,加上字符和减去字符是一样的
} //所以这里选择成本小的途径
int k;
for(k=1;k<m;k++)//k次搜索,最差一个字母构成回文==每次删掉一个字母
{
for(i=1;i<=m-k;i++)//从1到m-k的长度
{
int j=i+k;
dp[i][j]=inf;//初始化
dp[i][j]=min(dp[i+1][j]+x[s[i]],dp[i][j-1]+x[s[j]]);
if(s[i]==s[j])
dp[i][j]=min(dp[i][j],dp[i+1][j-1]);
}
}
printf("%d\n",dp[1][m]);//从1到m构成回文串的最小花费
}

F - Cheapest Palindrome的更多相关文章

  1. POJ 题目3280 Cheapest Palindrome(区间DP)

    Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7148   Accepted: 34 ...

  2. 【POJ】3280 Cheapest Palindrome(区间dp)

    Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10943   Accepted: 5 ...

  3. Cheapest Palindrome(区间DP)

    个人心得:动态规划真的是够烦人的,这题好不容易写出了转移方程,结果超时,然后看题解,为什么这些题目都是这样一步一步的 递推,在我看来就是懵逼的状态,还有那个背包也是,硬是从最大的V一直到0,而这个就是 ...

  4. POJ3280 Cheapest Palindrome 【DP】

    Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6013   Accepted: 29 ...

  5. 【POJ - 3280】Cheapest Palindrome(区间dp)

    Cheapest Palindrome 直接翻译了 Descriptions 给定一个字符串S,字符串S的长度为M(M≤2000),字符串S所含有的字符的种类的数量为N(N≤26),然后给定这N种字符 ...

  6. [USACO07OPEN]便宜的回文Cheapest Palindrome

    字串S长M,由N个小写字母构成.欲通过增删字母将其变为回文串,增删特定字母花费不同,求最小花费.        题目描述见上            显然 这是一道区间DP 从两头DP,枚举长度啥的很套 ...

  7. Cheapest Palindrome [POJ3280] [区间DP] [经典]

    一句话题意:每个字母添加和删除都相应代价(可以任意位置 增加/删除),求把原串变成回文串的最小代价 Description 保持对所有奶牛的跟踪是一项棘手的任务,因此农场主约翰已经安装了一个系统来实现 ...

  8. [luoguP2890] [USACO07OPEN]便宜的回文Cheapest Palindrome(DP)

    传送门 f[i][j] 表示区间 i 到 j 变为回文串所需最小费用 1.s[i] == s[j] f[i][j] = f[i + 1][j - 1] 2.s[i] != s[j] f[i][j] = ...

  9. POJ 3280 Cheapest Palindrome DP题解

    看到Palindrome的题目.首先想到的应该是中心问题,然后从中心出发,思考怎样解决. DP问题通常是从更加小的问题转化到更加大的问题.然后是从地往上 bottom up地计算答案的. 能得出状态转 ...

随机推荐

  1. .NET Core 处理 WebAPI JSON 返回烦人的null为空

    前言 项目开发中不管是前台还是后台都会遇到烦人的null,数据库表中字段允许空值,则代码实体类中对应的字段类型为可空类型Nullable<>,如int?,DateTime?,null值字段 ...

  2. python模块详解 | progressbar

    参考官方文档:https://pypi.org/project/progressbar/#description progressbar 安装: pip install progressbar pro ...

  3. 【Linux】vim小技巧,如何批量添加或者删除注释

    环境:centos vim或者vi都可以 例如文件如下: aaa bbb ccc ddd 有四行文件,想将前三行都添加注释 先查看行数: :set nu  可以这样做: :1,3s%^%#% 即可,如 ...

  4. CTFshow-萌新赛杂项_签到

    查看网页信息 http://game.ctf.show/r2/ 把网页源码下载后发现有大片空白 使用winhex打开 把这些16进制数值复制到文件中 把20替换为0,09替换为1后 得到一串二进制数值 ...

  5. pycharm工具的使用

    一.Pycharm常用快捷键 快捷键 作用 备注  ctrl + win + 空格  自动提示并导包  连按两次  ctrl + alt + 空格  自动提示并导包  连按两次  Alt + Ente ...

  6. Hadoop2.7.7阿里云安装部署

    阿里云的网络环境不需要我们配置,如果是在自己电脑上的虚拟机,虚拟机的安装步骤可以百度.这里是单机版的安装(也有集群模式的介绍)使用Xshell连接阿里云主机,用命令将自己下载好的安装包上传到服务器 # ...

  7. 1.2V升压到3V和3.3V的升压芯片

    1.2V镍氢电池升压到3V和3.3V输出,1.2V升压3V,1.2V升压3.3V稳压输出供电的芯片. PW5100 是一款低静态电流.达效率. PFM 模式控制的同步升压变换器. PW5100 所需的 ...

  8. Py数据类型—列表,字典,元组

    列表:数据类型list. 写法li=[1,12,9,"sdsad",["ad","dd"] ].用中括号括起来,用逗号分割每个元素列表中元素 ...

  9. Vue基础之用插值表达式在视图区显示数据

    Vue基础之用插值表达式在视图区显示数据 第一步:当然就是你要引入Vue.js这个脚本文件啦! <script src="https://cdn.jsdelivr.net/npm/vu ...

  10. JavaScript中的深拷贝和浅拷贝!【有错误】还未修改!请逛其他园子!

    JavaScript中的深拷贝和浅拷贝! 浅拷贝 1.浅拷贝只是拷贝一层,更深层次对象级别的只拷贝引用.{也就是拷贝的是地址!简而言之就是在新的对象中修改深层次的值也会影响原来的对象!} // 2.深 ...