F - Cheapest Palindrome
有一个长度为m的字符串,由n种小写字母组成。对应的n种字母在这个字符串加上或者减去都有相应的费用,现在要将这个字符串变成回文串,问最低消费是多少?
Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents are currently a single string with length M (1 ≤ M ≤ 2,000) characters drawn from an alphabet of N (1 ≤ N ≤ 26) different symbols (namely, the lower-case roman alphabet).
Cows, being the mischievous creatures they are, sometimes try to spoof the system by walking backwards. While a cow whose ID is "abcba" would read the same no matter which direction the she walks, a cow with the ID "abcb" can potentially register as two different IDs ("abcb" and "bcba").
FJ would like to change the cows's ID tags so they read the same no matter which direction the cow walks by. For example, "abcb" can be changed by adding "a" at the end to form "abcba" so that the ID is palindromic (reads the same forwards and backwards). Some other ways to change the ID to be palindromic are include adding the three letters "bcb" to the begining to yield the ID "bcbabcb" or removing the letter "a" to yield the ID "bcb". One can add or remove characters at any location in the string yielding a string longer or shorter than the original string.
Unfortunately as the ID tags are electronic, each character insertion or deletion has a cost (0 ≤ cost ≤ 10,000) which varies depending on exactly which character value to be added or deleted. Given the content of a cow's ID tag and the cost of inserting or deleting each of the alphabet's characters, find the minimum cost to change the ID tag so it satisfies FJ's requirements. An empty ID tag is considered to satisfy the requirements of reading the same forward and backward. Only letters with associated costs can be added to a string.
Input
Line 2: This line contains exactly M characters which constitute the initial ID string
Lines 3..N+2: Each line contains three space-separated entities: a character of the input alphabet and two integers which are respectively the cost of adding and deleting that character.
Output
Sample Input
3 4
abcb
a 1000 1100
b 350 700
c 200 800
Sample Output
900
Hint
定义dp [ i ] [ j ] 为区间 i 到 j 变成回文的最小代价。
那么对于dp[i][j]三种情况
首先:对于一个串如果s[i]==s[j],那么dp[i][j]=dp[i+1][j-1];
其次:如果dp[i+1][j]是回文串,那么dp[i][j]=dp[i+1][j]+min(add[i],del[i]);
最后,如果dp[i][j-1]是回文串,那么dp[i][j]=dp[i][j-1] + min(add[j],del[j]);
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<iostream>
using namespace std;
const int inf =0x3f3f3f3f;
int dp[2005][2005],x[256],i,add,del,n,m;
int main()
{
char s[2005],c;
scanf("%d%d",&n,&m);
scanf("%s",s+1);
for(i=1;i<=n;i++)
{
getchar();//吸收回车
scanf("%c %d%d",&c,&add,&del);
x[c]=min(add,del);//对于拼凑回文串,加上字符和减去字符是一样的
} //所以这里选择成本小的途径
int k;
for(k=1;k<m;k++)//k次搜索,最差一个字母构成回文==每次删掉一个字母
{
for(i=1;i<=m-k;i++)//从1到m-k的长度
{
int j=i+k;
dp[i][j]=inf;//初始化
dp[i][j]=min(dp[i+1][j]+x[s[i]],dp[i][j-1]+x[s[j]]);
if(s[i]==s[j])
dp[i][j]=min(dp[i][j],dp[i+1][j-1]);
}
}
printf("%d\n",dp[1][m]);//从1到m构成回文串的最小花费
}
F - Cheapest Palindrome的更多相关文章
- POJ 题目3280 Cheapest Palindrome(区间DP)
Cheapest Palindrome Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7148 Accepted: 34 ...
- 【POJ】3280 Cheapest Palindrome(区间dp)
Cheapest Palindrome Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10943 Accepted: 5 ...
- Cheapest Palindrome(区间DP)
个人心得:动态规划真的是够烦人的,这题好不容易写出了转移方程,结果超时,然后看题解,为什么这些题目都是这样一步一步的 递推,在我看来就是懵逼的状态,还有那个背包也是,硬是从最大的V一直到0,而这个就是 ...
- POJ3280 Cheapest Palindrome 【DP】
Cheapest Palindrome Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6013 Accepted: 29 ...
- 【POJ - 3280】Cheapest Palindrome(区间dp)
Cheapest Palindrome 直接翻译了 Descriptions 给定一个字符串S,字符串S的长度为M(M≤2000),字符串S所含有的字符的种类的数量为N(N≤26),然后给定这N种字符 ...
- [USACO07OPEN]便宜的回文Cheapest Palindrome
字串S长M,由N个小写字母构成.欲通过增删字母将其变为回文串,增删特定字母花费不同,求最小花费. 题目描述见上 显然 这是一道区间DP 从两头DP,枚举长度啥的很套 ...
- Cheapest Palindrome [POJ3280] [区间DP] [经典]
一句话题意:每个字母添加和删除都相应代价(可以任意位置 增加/删除),求把原串变成回文串的最小代价 Description 保持对所有奶牛的跟踪是一项棘手的任务,因此农场主约翰已经安装了一个系统来实现 ...
- [luoguP2890] [USACO07OPEN]便宜的回文Cheapest Palindrome(DP)
传送门 f[i][j] 表示区间 i 到 j 变为回文串所需最小费用 1.s[i] == s[j] f[i][j] = f[i + 1][j - 1] 2.s[i] != s[j] f[i][j] = ...
- POJ 3280 Cheapest Palindrome DP题解
看到Palindrome的题目.首先想到的应该是中心问题,然后从中心出发,思考怎样解决. DP问题通常是从更加小的问题转化到更加大的问题.然后是从地往上 bottom up地计算答案的. 能得出状态转 ...
随机推荐
- CentOS-8.3.2011-x86_64 配置网络环境的几个方案以及问题处理方法
1. 在安装前的环境配置中配置网络 可以通过 NETWORK & HOST NAME 进行网络配置, 推介通过这里便捷设置. 如果在安装的 CentOS 之前的配置选项中没有进行用户和网络的配 ...
- C++语言基础——02数据的存取
常量 常量是指在程序中使用的一些具体的数.字符.在程序运行过程中,其值不能更改.如123.1.23.'a'."abc".True等. 常量的定义 const 类型 常量名 = 常量 ...
- WPF Line 的颜色过度动画
<Line Grid.Column="2" Grid.ColumnSpan="2" VerticalAlignment="Center" ...
- Sentinel限流之快速失败和漏桶算法
距离上次总结Sentinel的滑动窗口算法已经有些时间了,原本想着一口气将它的core模块全部总结完,但是中间一懒就又松懈下来了,这几天在工作之余又重新整理了一下,在这里做一个学习总结. 上篇滑动窗口 ...
- 【C++】《Effective C++》第二章
第二章 构造/析构/赋值运算 条款05:了解C++默默编写并调用哪些函数 默认函数 一般情况下,编译器会为类默认合成以下函数:default构造函数.copy构造函数.non-virtual析构函数. ...
- Linux性能相关命令
Linux性能相关命令 目录 Linux性能相关命令 1. 查看硬盘相关信息 2. 查看CPU相关信息 3. 查看内存相关信息 4. 查看进程运行的信息 1. 查看硬盘相关信息 cat /proc/s ...
- 转发:[服务器]SSL安装证书教程
[服务器]SSL安装证书教程 来自阿里云教程 Tomcat服务器安装SSL证书 安装PFX格式证书 https://help.aliyun.com/document_detail/98576.ht ...
- P2979 [USACO10JAN]奶酪塔Cheese Towers(完全背包,递推)
题目描述 Farmer John wants to save some blocks of his cows' delicious Wisconsin cheese varieties in his ...
- 攻防世界—pwn—hello_pwn
题目分析 下载文件后首先使用checksec检查文件保护机制 使用ida查看伪代码 思路明确,让dword_60106C == 1853186401即可输出flag 信息收集 偏移量 sub_4006 ...
- ctfhub技能树—sql注入—时间盲注
打开靶机 查看页面信息 测试时间盲注 可以看到在执行命令后会有一定时间的等待,确定为时间盲注 直接上脚本 1 #! /usr/bin/env python 2 # _*_ coding:utf-8 _ ...