F - Cheapest Palindrome
有一个长度为m的字符串,由n种小写字母组成。对应的n种字母在这个字符串加上或者减去都有相应的费用,现在要将这个字符串变成回文串,问最低消费是多少?
Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents are currently a single string with length M (1 ≤ M ≤ 2,000) characters drawn from an alphabet of N (1 ≤ N ≤ 26) different symbols (namely, the lower-case roman alphabet).
Cows, being the mischievous creatures they are, sometimes try to spoof the system by walking backwards. While a cow whose ID is "abcba" would read the same no matter which direction the she walks, a cow with the ID "abcb" can potentially register as two different IDs ("abcb" and "bcba").
FJ would like to change the cows's ID tags so they read the same no matter which direction the cow walks by. For example, "abcb" can be changed by adding "a" at the end to form "abcba" so that the ID is palindromic (reads the same forwards and backwards). Some other ways to change the ID to be palindromic are include adding the three letters "bcb" to the begining to yield the ID "bcbabcb" or removing the letter "a" to yield the ID "bcb". One can add or remove characters at any location in the string yielding a string longer or shorter than the original string.
Unfortunately as the ID tags are electronic, each character insertion or deletion has a cost (0 ≤ cost ≤ 10,000) which varies depending on exactly which character value to be added or deleted. Given the content of a cow's ID tag and the cost of inserting or deleting each of the alphabet's characters, find the minimum cost to change the ID tag so it satisfies FJ's requirements. An empty ID tag is considered to satisfy the requirements of reading the same forward and backward. Only letters with associated costs can be added to a string.
Input
Line 2: This line contains exactly M characters which constitute the initial ID string
Lines 3..N+2: Each line contains three space-separated entities: a character of the input alphabet and two integers which are respectively the cost of adding and deleting that character.
Output
Sample Input
3 4
abcb
a 1000 1100
b 350 700
c 200 800
Sample Output
900
Hint
定义dp [ i ] [ j ] 为区间 i 到 j 变成回文的最小代价。
那么对于dp[i][j]三种情况
首先:对于一个串如果s[i]==s[j],那么dp[i][j]=dp[i+1][j-1];
其次:如果dp[i+1][j]是回文串,那么dp[i][j]=dp[i+1][j]+min(add[i],del[i]);
最后,如果dp[i][j-1]是回文串,那么dp[i][j]=dp[i][j-1] + min(add[j],del[j]);
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<iostream>
using namespace std;
const int inf =0x3f3f3f3f;
int dp[2005][2005],x[256],i,add,del,n,m;
int main()
{
char s[2005],c;
scanf("%d%d",&n,&m);
scanf("%s",s+1);
for(i=1;i<=n;i++)
{
getchar();//吸收回车
scanf("%c %d%d",&c,&add,&del);
x[c]=min(add,del);//对于拼凑回文串,加上字符和减去字符是一样的
} //所以这里选择成本小的途径
int k;
for(k=1;k<m;k++)//k次搜索,最差一个字母构成回文==每次删掉一个字母
{
for(i=1;i<=m-k;i++)//从1到m-k的长度
{
int j=i+k;
dp[i][j]=inf;//初始化
dp[i][j]=min(dp[i+1][j]+x[s[i]],dp[i][j-1]+x[s[j]]);
if(s[i]==s[j])
dp[i][j]=min(dp[i][j],dp[i+1][j-1]);
}
}
printf("%d\n",dp[1][m]);//从1到m构成回文串的最小花费
}
F - Cheapest Palindrome的更多相关文章
- POJ 题目3280 Cheapest Palindrome(区间DP)
Cheapest Palindrome Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7148 Accepted: 34 ...
- 【POJ】3280 Cheapest Palindrome(区间dp)
Cheapest Palindrome Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10943 Accepted: 5 ...
- Cheapest Palindrome(区间DP)
个人心得:动态规划真的是够烦人的,这题好不容易写出了转移方程,结果超时,然后看题解,为什么这些题目都是这样一步一步的 递推,在我看来就是懵逼的状态,还有那个背包也是,硬是从最大的V一直到0,而这个就是 ...
- POJ3280 Cheapest Palindrome 【DP】
Cheapest Palindrome Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6013 Accepted: 29 ...
- 【POJ - 3280】Cheapest Palindrome(区间dp)
Cheapest Palindrome 直接翻译了 Descriptions 给定一个字符串S,字符串S的长度为M(M≤2000),字符串S所含有的字符的种类的数量为N(N≤26),然后给定这N种字符 ...
- [USACO07OPEN]便宜的回文Cheapest Palindrome
字串S长M,由N个小写字母构成.欲通过增删字母将其变为回文串,增删特定字母花费不同,求最小花费. 题目描述见上 显然 这是一道区间DP 从两头DP,枚举长度啥的很套 ...
- Cheapest Palindrome [POJ3280] [区间DP] [经典]
一句话题意:每个字母添加和删除都相应代价(可以任意位置 增加/删除),求把原串变成回文串的最小代价 Description 保持对所有奶牛的跟踪是一项棘手的任务,因此农场主约翰已经安装了一个系统来实现 ...
- [luoguP2890] [USACO07OPEN]便宜的回文Cheapest Palindrome(DP)
传送门 f[i][j] 表示区间 i 到 j 变为回文串所需最小费用 1.s[i] == s[j] f[i][j] = f[i + 1][j - 1] 2.s[i] != s[j] f[i][j] = ...
- POJ 3280 Cheapest Palindrome DP题解
看到Palindrome的题目.首先想到的应该是中心问题,然后从中心出发,思考怎样解决. DP问题通常是从更加小的问题转化到更加大的问题.然后是从地往上 bottom up地计算答案的. 能得出状态转 ...
随机推荐
- “==”和equals的区别
区别: (1)比较基本数据类型时 只能采用"==",比较的是数值; (2)当比较引用数据类型时 "==" 比较的是引用对象的内存地址; 而equals分两种情况 ...
- MongoDB备份(mongoexport)与恢复(mongoimport)
1.备份恢复工具介绍: mongoexport/mongoimport mongodump/mongorestore(本文未涉及) 2.备份工具区别在哪里? 2.1 mongoexport/mongo ...
- oracle11g数据库安装采坑记录
第一处坑: 解决方案: 原文:https://blog.csdn.net/yhj198927/article/details/49178279 1.打开oracle的"Net Manager ...
- 【MySQL 高级】知识拓展
MySQL高级 知识拓展 MySQL高级 知识拓展 数据量 和 B+树 的关系 事务隔离级别集底层原理MVCC 唯一索引和普通索引的关键不同点 MRR:multi range read 练习和总结
- Docker学习笔记之搭建Docker私有仓库
Docker仓库服务器名为Docker注册(registry)服务器.可以使用docker push命令将镜像上传到注册服务器,也可以使用docker pull命令下载服务器的镜像. Docker注册 ...
- springboot 和 mongdb连接问题 Exception in thread "main" com.mongodb.MongoSecurityException:
1 Exception in thread "main" com.mongodb.MongoSecurityException: Exception authenticating ...
- zabbix_server上的问题
不要写成127.0.0.1,要不然一直包zabbix agent没有启动.
- Objects as Points:预测目标中心,无需NMS等后处理操作 | CVPR 2019
论文基于关键点预测网络提出CenterNet算法,将检测目标视为关键点,先找到目标的中心点,然后回归其尺寸.对比上一篇同名的CenterNet算法,本文的算法更简洁且性能足够强大,不需要NMS等后处理 ...
- LeetCode559.N 叉树的最大深度
题目 法一.层序遍历 1 class Solution { 2 public: 3 int maxDepth(Node* root) { 4 if(root== NULL) return 0; 5 q ...
- mysql—group_concat函数
MySQL中的group_concat函数的使用方法,比如select group_concat(name) . 完整的语法如下: group_concat([DISTINCT] 要连接的字段 [Or ...