IT City company developing computer games decided to upgrade its way to reward its employees. Now it looks the following way. After a new game release users start buying it actively, and the company tracks the number of sales with
precision to each transaction. Every time when the next number of sales is not divisible by any number from 2 to 10 every
developer of this game gets a small bonus.

A game designer Petya knows that the company is just about to release a new game that was partly developed by him. On the basis of his experience he predicts that n people
will buy the game during the first month. Now Petya wants to determine how many times he will get the bonus. Help him to know it.

Input

The only line of the input contains one integer n (1 ≤ n ≤ 1018)
— the prediction on the number of people who will buy the game.

Output

Output one integer showing how many numbers from 1 to n are
not divisible by any number from 2 to 10.

Examples
input
12
output
2

题意:给你一个数n,找出1~n范围内不被2~10整除的数的个数。

思路:这题可以用容斥原理,找到2~10里的4个素数2,3,5,7,然后用容斥原理就行了。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0)
int main()
{
ll n,ans;
while(scanf("%I64d",&n)!=EOF)
{
ans=n-(n/2+n/3+n/5+n/7-n/6-n/10-n/14-n/15-n/21-n/35+n/30+n/42+n/70+n/105-n/210 );
printf("%I64d\n",ans);
}
return 0 ;
}

codeforces 630K Indivisibility (容斥原理)的更多相关文章

  1. codeforces 630K - Indivisibility

    K. Indivisibility 题意:给一个n(1 <= n <= 10^18)的区间,问区间中有多少个数不能被2~10这些数整除: 整除只需要看素数即可,只有2,3,5,7四个素数: ...

  2. Experimental Educational Round: VolBIT Formulas Blitz K. Indivisibility —— 容斥原理

    题目链接:http://codeforces.com/contest/630/problem/K K. Indivisibility time limit per test 0.5 seconds m ...

  3. codeforces 630KIndivisibility(容斥原理)

    K. Indivisibility time limit per test 0.5 seconds memory limit per test 64 megabytes input standard ...

  4. Codeforces 803F(容斥原理)

    题意: 给n个正整数,求有多少个GCD为1的子序列.答案对1e9+7取模. 1<=n<=1e5,数字ai满足1<=ai<=1e5 分析: 设f(x)表示以x为公约数的子序列个数 ...

  5. hdu4135-Co-prime & Codeforces 547C Mike and Foam (容斥原理)

    hdu4135 求[L,R]范围内与N互质的数的个数. 分别求[1,L]和[1,R]和n互质的个数,求差. 利用容斥原理求解. 二进制枚举每一种质数的组合,奇加偶减. #include <bit ...

  6. Codeforces 451E Devu and Flowers(容斥原理)

    题目链接:Codeforces 451E Devu and Flowers 题目大意:有n个花坛.要选s支花,每一个花坛有f[i]支花.同一个花坛的花颜色同样,不同花坛的花颜色不同,问说能够有多少种组 ...

  7. Codeforces Round #345 (Div. 2)【A.模拟,B,暴力,C,STL,容斥原理】

    A. Joysticks time limit per test:1 second memory limit per test:256 megabytes input:standard input o ...

  8. Codeforces Round #198 (Div. 2) E. Iahub and Permutations —— 容斥原理

    题目链接:http://codeforces.com/contest/340/problem/E E. Iahub and Permutations time limit per test 1 sec ...

  9. Codeforces 839D Winter is here - 暴力 - 容斥原理

    Winter is here at the North and the White Walkers are close. John Snow has an army consisting of n s ...

随机推荐

  1. 【Flutter】可滚动组件之SingleChildScrollView

    前言 SingleChildScrollView类似于Android中的ScrollView,它只能接收一个子组件. 接口描述 const SingleChildScrollView({ Key ke ...

  2. Docker学习笔记之查看Docker

    命令: 使用history命令查看镜像历史 使用cp命令复制容器中的文件到主机 使用commit命令把修改过的容器创建为镜像 使用diff命令检查容器文件的修改 使用inspect命令查看容器/镜像详 ...

  3. ps -p 进程号

    [root@ma ~]# ps -p 1 PID TTY TIME CMD 1 ? 00:00:01 init

  4. 【Linux】shell脚本实现多并发

    情景 shell脚本的执行效率虽高,但当任务量巨大时仍然需要较长的时间,尤其是需要执行一大批的命令时.因为默认情况下,shell脚本中的命令是串行执行的.如果这些命令相互之间是独立的,则可以使用&qu ...

  5. 【Oracle】将数据库设为开机自启

    由于某些特殊条件,需要将oracle数据库设置为开机自己,其实很简单 环境:oracle10gR2 1.修改/etc/oratab # This file is used by ORACLE util ...

  6. 使用NIM Server网络半自动安装AIX系统

    一.NIM配置 1.安装NIMServer前准备 1.1.配置IP地址 # ifconfig –a #检查当前IP地址# # smitty mktcpip #设置IP地址# 选择第一块网卡(插网线的网 ...

  7. printf函数输出格式总结

    printf函数格式 函数描述: printf("[格式化字符串]", [参数链表]); 函数声明: int printf(const char *format, ...) ; 输 ...

  8. 入门OJ:最短路径树入门

    题目描述 n个城市用m条双向公路连接,使得任意两个城市都能直接或间接地连通.其中城市编号为1..n,公路编号为1..m.任意个两个城市间的货物运输会选择最短路径,把这n*(n-1)条最短路径的和记为S ...

  9. 2.4V升3.3V,2.4V升3V,1A大电流升压芯片

    两节镍氢电池串联就是1.2V+1.2V=2.4V的供电电压了,2.4V升3V, 2.4V升3.3V的话,就能稳压稳定给模块供电了,镍氢电池是会随着使用的电池电量减少的话,电池的电压也是跟着变化的,导致 ...

  10. 探索微软开源Python自动化神器Playwright

    相信玩过爬虫的朋友都知道selenium,一个自动化测试的神器工具.写个Python自动化脚本解放双手基本上是常规的操作了,爬虫爬不了的,就用自动化测试凑一凑. 虽然selenium有完备的文档,但也 ...