题目链接

http://acm.hdu.edu.cn/showproblem.php?pid=4800

Problem Description
A role-playing game (RPG and sometimes roleplaying game) is a game in which players assume the roles of characters in a fictional setting. Players take responsibility for acting out these roles within a narrative, either through literal acting or through a process of structured decision-making or character development.
Recently, Josephina is busy playing a RPG named TX3. In this game, M characters are available to by selected by players. In the whole game, Josephina is most interested in the "Challenge Game" part.
The Challenge Game is a team play game. A challenger team is made up of three players, and the three characters used by players in the team are required to be different. At the beginning of the Challenge Game, the players can choose any characters combination as the start team. Then, they will fight with N AI teams one after another. There is a special rule in the Challenge Game: once the challenger team beat an AI team, they have a chance to change the current characters combination with the AI team. Anyway, the challenger team can insist on using the current team and ignore the exchange opportunity. Note that the players can only change the characters combination to the latest defeated AI team. The challenger team gets victory only if they beat all the AI teams.
Josephina is good at statistics, and she writes a table to record the winning rate between all different character combinations. She wants to know the maximum winning probability if she always chooses best strategy in the game. Can you help her?
 
Input
There are multiple test cases. The first line of each test case is an integer M (3 ≤ M ≤ 10), which indicates the number of characters. The following is a matrix T whose size is R × R. R equals to C(M, 3). T(i, j) indicates the winning rate of team i when it is faced with team j. We guarantee that T(i, j) + T(j, i) = 1.0. All winning rates will retain two decimal places. An integer N (1 ≤ N ≤ 10000) is given next, which indicates the number of AI teams. The following line contains N integers which are the IDs (0-based) of the AI teams. The IDs can be duplicated.
 
Output
For each test case, please output the maximum winning probability if Josephina uses the best strategy in the game. For each answer, an absolute error not more than 1e-6 is acceptable.
 
Sample Input
4
0.50 0.50 0.20 0.30
0.50 0.50 0.90 0.40
0.80 0.10 0.50 0.60
0.70 0.60 0.40 0.50
3
0 1 2
 
Sample Output
0.378000
 
Source
 
 
Recommend
We have carefully selected several similar problems for you:  5901 5899 5898 5897 5896 
 
 
题意:输入M,表示有K=C(M,3) 种机器人,然后输入k*k的矩阵 s[i][j]表示第i种机器人打赢第j种机器人的概率,接下来输入N和N个数,每个数表示N个机器人的种类,现在你可以任选一种机器人依次和这N个机器人打,每次打赢一个机器人后,你可以和他交换机器人,求打败N个机器人的最大概率;
 
思路:定义dp[i] 表示交换或没交换 当前你的机器人为i 时打败前x个机器人的最大概率;
 
代码如下:
#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <cstring>
using namespace std;
typedef long long LL;
double s[][];
double d1[];
int a[]; int main()
{
int M,N;
while(scanf("%d",&M)!=EOF)
{
M=M*(M-)*(M-)/;
for(int i=;i<M;i++)
{
for(int j=;j<M;j++)
scanf("%lf",&s[i][j]);
}
scanf("%d",&N);
for(int i=;i<N;i++)
scanf("%d",&a[i]);
for(int i=;i<M;i++)
d1[i]=1.0;
for(int i=;i<N;i++)
{
int x=a[i];
double r=0.0;
for(int j=;j<M;j++)
{
d1[j]=d1[j]*s[j][x];
r=max(r,d1[j]);
}
d1[x]=max(d1[x],r);
}
printf("%.6lf\n",d1[a[N-]]);
}
return ;
}

2013 Asia Changsha Regional Contest---Josephina and RPG(DP)的更多相关文章

  1. The 2013 ACM-ICPC Asia Changsha Regional Contest - J

    Josephina and RPG Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge A role-playin ...

  2. The 2013 ACM-ICPC Asia Changsha Regional Contest - K

    Pocket Cube Time Limit: 2 Seconds      Memory Limit: 65536 KB Pocket Cube is a 3-D combination puzzl ...

  3. The 2013 ACM-ICPC Asia Changsha Regional Contest - A

    Alice's Print Service Time Limit: 2 Seconds      Memory Limit: 65536 KB Alice is providing print ser ...

  4. 2013 Asia Chengdu Regional Contest

    hdu 4786 Fibonacci Tree http://acm.hdu.edu.cn/showproblem.php?pid=4786 copyright@ts 算法源于ts,用最小生成树可以求 ...

  5. 2013 Asia Hangzhou Regional Contest

    Lights Against Dudely http://acm.hdu.edu.cn/showproblem.php?pid=4770 15个位置,所以可以暴力枚举那些放,对于放的再暴力枚举哪个转, ...

  6. HDU4771(2013 Asia Hangzhou Regional Contest )

    http://acm.hdu.edu.cn/showproblem.php?pid=4771 题目大意: 给你一幅图(N*M)“@”是起点,"#"是墙,“.”是路,然后图上有K个珠 ...

  7. 2013 Asia Hangzhou Regional Contest hdu4780 Candy Factory

    参考:https://blog.csdn.net/sd_invol/article/details/15813671 要点 每个任务的结束时间是固定的,不受任何因素影响 机器只在最一开始有用,在那之后 ...

  8. zoj 3659 Conquer a New Region The 2012 ACM-ICPC Asia Changchun Regional Contest

    Conquer a New Region Time Limit: 5 Seconds      Memory Limit: 32768 KB The wheel of the history roll ...

  9. 2018 ACM-ICPC Asia Beijing Regional Contest (部分题解)

    摘要 本文主要给出了2018 ACM-ICPC Asia Beijing Regional Contest的部分题解,意即熟悉区域赛题型,保持比赛感觉. Jin Yong’s Wukong Ranki ...

随机推荐

  1. 干货来袭-整套完整安全的API接口解决方案

    在各种手机APP泛滥的现在,背后都有同样泛滥的API接口在支撑,其中鱼龙混杂,直接裸奔的WEB API大量存在,安全性令人堪优 在以前WEB API概念没有很普及的时候,都采用自已定义的接口和结构,对 ...

  2. Storm如何保证可靠的消息处理

    作者:Jack47 PS:如果喜欢我写的文章,欢迎关注我的微信公众账号程序员杰克,两边的文章会同步,也可以添加我的RSS订阅源. 本文主要翻译自Storm官方文档Guaranteeing messag ...

  3. Android之常见问题集锦Ⅱ

    Android问题集锦Ⅰ:http://www.cnblogs.com/AndroidJotting/p/4608025.html EditText输入内容改变事件监听 _edit.addTextCh ...

  4. Python爬虫小白入门(四)PhatomJS+Selenium第一篇

    一.前言 在上一篇博文中,我们的爬虫面临着一个问题,在爬取Unsplash网站的时候,由于网站是下拉刷新,并没有分页.所以不能够通过页码获取页面的url来分别发送网络请求.我也尝试了其他方式,比如下拉 ...

  5. celery使用的一些小坑和技巧(非从无到有的过程)

    纯粹是记录一下自己在刚开始使用的时候遇到的一些坑,以及自己是怎样通过配合redis来解决问题的.文章分为三个部分,一是怎样跑起来,并且怎样监控相关的队列和任务:二是遇到的几个坑:三是给一些自己配合re ...

  6. java springMVC SSM 操作日志 4级别联动 文件管理 头像编辑 shiro redis

    A 调用摄像头拍照,自定义裁剪编辑头像 B 集成代码生成器 [正反双向](单表.主表.明细表.树形表,开发利器)+快速构建表单;  技术:313596790freemaker模版技术 ,0个代码不用写 ...

  7. 负载均衡——nginx理论

     nginx是什么? nginx是一个强大的web服务器软件,用于处理高并发的http请求和作为反向代理服务器做负载均衡.具有高性能.轻量级.内存消耗少,强大的负载均衡能力等优势.  nginx架构? ...

  8. Android中点击事件的实现方式

    在之前博文中多次使用了点击事件的处理实现,有朋友就问了,发现了很多按钮的点击实现,但有很多博文中使用的实现方式有都不一样,到底是怎么回事.今天我们就汇总一下点击事件的实现方式. 点击事件的实现大致分为 ...

  9. maven 快照

    大型应用软件一般由多个模块组成,一般它是多个团队开发同一个应用程序的不同模块,这是比较常见的场景.例如,一个团队正在对应用程序的应用程序,用户界面项目(app-ui.jar:1.0) 的前端进行开发, ...

  10. SpringMvc中的数据校验

    SpringMvc中的数据校验 Hibernate校验框架中提供了很多注解的校验,如下: 注解 运行时检查 @AssertFalse 被注解的元素必须为false @AssertTrue 被注解的元素 ...