拓扑排序(一)之 C语言详解
本章介绍图的拓扑排序。和以往一样,本文会先对拓扑排序的理论知识进行介绍,然后给出C语言的实现。后续再分别给出C++和Java版本的实现。
目录
1. 拓扑排序介绍
2. 拓扑排序的算法图解
3. 拓扑排序的代码说明
4. 拓扑排序的完整源码和测试程序转载请注明出处:http://www.cnblogs.com/skywang12345/
更多内容:数据结构与算法系列 目录
拓扑排序介绍
拓扑排序(Topological Order)是指,将一个有向无环图(Directed Acyclic Graph简称DAG)进行排序进而得到一个有序的线性序列。
这样说,可能理解起来比较抽象。下面通过简单的例子进行说明!
例如,一个项目包括A、B、C、D四个子部分来完成,并且A依赖于B和D,C依赖于D。现在要制定一个计划,写出A、B、C、D的执行顺序。这时,就可以利用到拓扑排序,它就是用来确定事物发生的顺序的。
在拓扑排序中,如果存在一条从顶点A到顶点B的路径,那么在排序结果中B出现在A的后面。
拓扑排序的算法图解
拓扑排序算法的基本步骤:
1. 构造一个队列Q(queue) 和 拓扑排序的结果队列T(topological);
2. 把所有没有依赖顶点的节点放入Q;
3. 当Q还有顶点的时候,执行下面步骤:
3.1 从Q中取出一个顶点n(将n从Q中删掉),并放入T(将n加入到结果集中);
3.2 对n每一个邻接点m(n是起点,m是终点);
3.2.1 去掉边<n,m>;
3.2.2 如果m没有依赖顶点,则把m放入Q;
注:顶点A没有依赖顶点,是指不存在以A为终点的边。

以上图为例,来对拓扑排序进行演示。

第1步:将B和C加入到排序结果中。
顶点B和顶点C都是没有依赖顶点,因此将C和C加入到结果集T中。假设ABCDEFG按顺序存储,因此先访问B,再访问C。访问B之后,去掉边<B,A>和<B,D>,并将A和D加入到队列Q中。同样的,去掉边<C,F>和<C,G>,并将F和G加入到Q中。
(01) 将B加入到排序结果中,然后去掉边<B,A>和<B,D>;此时,由于A和D没有依赖顶点,因此并将A和D加入到队列Q中。
(02) 将C加入到排序结果中,然后去掉边<C,F>和<C,G>;此时,由于F有依赖顶点D,G有依赖顶点A,因此不对F和G进行处理。
第2步:将A,D依次加入到排序结果中。
第1步访问之后,A,D都是没有依赖顶点的,根据存储顺序,先访问A,然后访问D。访问之后,删除顶点A和顶点D的出边。
第3步:将E,F,G依次加入到排序结果中。
因此访问顺序是:B -> C -> A -> D -> E -> F -> G
拓扑排序的代码说明
拓扑排序是对有向无向图的排序。下面以邻接表实现的有向图来对拓扑排序进行说明。
1. 基本定义
// 邻接表中表对应的链表的顶点
typedef struct _ENode
{
int ivex; // 该边所指向的顶点的位置
struct _ENode *next_edge; // 指向下一条弧的指针
}ENode, *PENode;
// 邻接表中表的顶点
typedef struct _VNode
{
char data; // 顶点信息
ENode *first_edge; // 指向第一条依附该顶点的弧
}VNode;
// 邻接表
typedef struct _LGraph
{
int vexnum; // 图的顶点的数目
int edgnum; // 图的边的数目
VNode vexs[MAX];
}LGraph;
(01) LGraph是邻接表对应的结构体。 vexnum是顶点数,edgnum是边数;vexs则是保存顶点信息的一维数组。
(02) VNode是邻接表顶点对应的结构体。 data是顶点所包含的数据,而firstedge是该顶点所包含链表的表头指针。
(03) ENode是邻接表顶点所包含的链表的节点对应的结构体。 ivex是该节点所对应的顶点在vexs中的索引,而nextedge是指向下一个节点的。
2. 拓扑排序
/*
* 拓扑排序
*
* 参数说明:
* G -- 邻接表表示的有向图
* 返回值:
* -1 -- 失败(由于内存不足等原因导致)
* 0 -- 成功排序,并输入结果
* 1 -- 失败(该有向图是有环的)
*/
int topological_sort(LGraph G)
{
int i,j;
int index = 0;
int head = 0; // 辅助队列的头
int rear = 0; // 辅助队列的尾
int *queue; // 辅组队列
int *ins; // 入度数组
char *tops; // 拓扑排序结果数组,记录每个节点的排序后的序号。
int num = G.vexnum;
ENode *node;
ins = (int *)malloc(num*sizeof(int)); // 入度数组
tops = (char *)malloc(num*sizeof(char));// 拓扑排序结果数组
queue = (int *)malloc(num*sizeof(int)); // 辅助队列
assert(ins!=NULL && tops!=NULL && queue!=NULL);
memset(ins, 0, num*sizeof(int));
memset(tops, 0, num*sizeof(char));
memset(queue, 0, num*sizeof(int));
// 统计每个顶点的入度数
for(i = 0; i < num; i++)
{
node = G.vexs[i].first_edge;
while (node != NULL)
{
ins[node->ivex]++;
node = node->next_edge;
}
}
// 将所有入度为0的顶点入队列
for(i = 0; i < num; i ++)
if(ins[i] == 0)
queue[rear++] = i; // 入队列
while (head != rear) // 队列非空
{
j = queue[head++]; // 出队列。j是顶点的序号
tops[index++] = G.vexs[j].data; // 将该顶点添加到tops中,tops是排序结果
node = G.vexs[j].first_edge; // 获取以该顶点为起点的出边队列
// 将与"node"关联的节点的入度减1;
// 若减1之后,该节点的入度为0;则将该节点添加到队列中。
while(node != NULL)
{
// 将节点(序号为node->ivex)的入度减1。
ins[node->ivex]--;
// 若节点的入度为0,则将其"入队列"
if( ins[node->ivex] == 0)
queue[rear++] = node->ivex; // 入队列
node = node->next_edge;
}
}
if(index != G.vexnum)
{
printf("Graph has a cycle\n");
free(queue);
free(ins);
free(tops);
return 1;
}
// 打印拓扑排序结果
printf("== TopSort: ");
for(i = 0; i < num; i ++)
printf("%c ", tops[i]);
printf("\n");
free(queue);
free(ins);
free(tops);
return 0;
}
说明:
(01) queue的作用就是用来存储没有依赖顶点的顶点。它与前面所说的Q相对应。
(02) tops的作用就是用来存储排序结果。它与前面所说的T相对应。
拓扑排序的完整源码和测试程序
拓扑排序(一)之 C语言详解的更多相关文章
- 原来Github上的README.md文件这么有意思——Markdown语言详解(sublime text2 版本)
一直想学习 Markdown 语言,想起以前读的一篇 赵凯强 的 博客 <原来Github上的README.md文件这么有意思——Markdown语言详解>,该篇博主 使用的是Mac系统, ...
- python 排序算法总结及实例详解
python 排序算法总结及实例详解 这篇文章主要介绍了python排序算法总结及实例详解的相关资料,需要的朋友可以参考下 总结了一下常见集中排序的算法 排序算法总结及实例详解"> 归 ...
- Java Web----EL(表达式语言)详解
Java Web中的EL(表达式语言)详解 表达式语言(Expression Language)简称EL,它是JSP2.0中引入的一个新内容.通过EL可以简化在JSP开发中对对象的引用,从而规范页面 ...
- Prim算法(一)之 C语言详解
本章介绍普里姆算法.和以往一样,本文会先对普里姆算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里 ...
- Kruskal算法(一)之 C语言详解
本章介绍克鲁斯卡尔算法.和以往一样,本文会先对克鲁斯卡尔算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3 ...
- Django 模版语言详解
一.简介 模版是纯文本文件.它可以产生任何基于文本的的格式(HTML,XML,CSV等等). 模版包括在使用时会被值替换掉的 变量,和控制模版逻辑的 标签. 例: {% extends "b ...
- Fluter基础巩固之Dart语言详解<一>
在上一篇https://www.cnblogs.com/webor2006/p/11367345.html中咱们已经搭建好了Flutter的开发环境了,而Flutter的开发语言是选用的dart,那么 ...
- 大牛针对零基础入门c语言详解指针(超详细)
C语言指针说难不难但是说容易又是最容易出错的地方,因此不管是你要做什么只要用到C指针你就跳不过,今天咱们就以 十九个例子来给大家简单的分析一下指针的应用,最后会有C语言视频资料提供给大家更加深入的参考 ...
- SQL语言详解
SQL 1. 概述 Structured Query Language 结构化查询语言 结构化查询语言(Structured Query Language)简称SQL,是一种数据库查询和程序设计语言, ...
随机推荐
- C# XMAL与WPF
通过老师上课的解释和我下课后的网上查询,我了解到了一些关于这三者的关系.XAML是.NET体系开发程序或者网页时前台编程的一种布局方式或者说开发语言,可以比较自由的用标签的方式进行布局,借鉴了HTML ...
- Linux初记
ctrl+u可以在shell下删除行,如果此键不起作用,就试试ctrl+x ctrl+z可以将程序挂起,不会终止程序,但可以将程序挂起. 通过fg命令可再把此作业切换到前台 cp命令的目标文件如果是一 ...
- RHEL6.5及Win7的和谐共处(投机版)
背景: 在Windows XP存在时,装了个RHEL6.5,用的是安装程序自带的Grub,后来将XP删除后重装了Windows7,RHEL的Grub被覆盖,启动不了RHEL了,于是补上RHEL的引导… ...
- 基于Linux的WebSphere性能调优与故障诊断
一.关于was数据源等问题的配置 (1)关于was数据源连接池的最大.最小配置多大合适?怎样去计算? (2)关于JVM的配置,64位系统,64位WAS,最值小和最大配置多大最优?怎样去计算? (3)应 ...
- 调试SQLSERVER (三)使用Windbg调试SQLSERVER的一些命令
调试SQLSERVER (三)使用Windbg调试SQLSERVER的一些命令 调试SQLSERVER (一)生成dump文件的方法调试SQLSERVER (二)使用Windbg调试SQLSERVER ...
- [.NET领域驱动设计实战系列]专题八:DDD案例:网上书店分布式消息队列和分布式缓存的实现
一.引言 在上一专题中,商家发货和用户确认收货功能引入了消息队列来实现的,引入消息队列的好处可以保证消息的顺序处理,并且具有良好的可扩展性.但是上一专题消息队列是基于内存中队列对象来实现,这样实现有一 ...
- Hello Mybatis 01 第一个CRUD
What's the Mybatis? MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了google c ...
- Spring Trasnaction管理(1)- 线程间事务隔离
问题导读 Spring中事务是如何实现的 Spring中各个线程间是如何进行连接.事务隔离的 Spring事务配置 Spring的事务管理应该是日常开发中总会碰到的,但是Spring具体是怎么实现线程 ...
- 鸟哥的Linux私房菜——基础学习篇 —— 笔记2
at 语法 == 注意,输入at之后便进入命令行模式 ------- 不管怎么样,只会执行一次. [test @test test]# at [-m] TIME (输入工作指令)[test @test ...
- DDD~Unity在DDD中的使用
回到目录 上一讲介绍了DDD中的领域层,并提到下次要讲Unity,所以这篇文章当然就要介绍它了,呵呵,Unity是Microsoft.Practices中的一部分,主要实现了依赖注入的功能,或者叫它控 ...