poj 3134 Power Calculus(迭代加深dfs+强剪枝)
Description
Starting with x and repeatedly multiplying by x, we can compute x31 with thirty multiplications: x2 = x × x, x3 = x2 × x, x4 = x3 × x, …, x31 = x30 × x. The operation of squaring can be appreciably shorten the sequence of multiplications. The following is a way to compute x31 with eight multiplications: x2 = x × x, x3 = x2 × x, x6 = x3 × x3, x7 = x6 × x, x14 = x7 × x7, x15 = x14 × x, x30 = x15 × x15, x31 = x30 × x. This is not the shortest sequence of multiplications to compute x31. There are many ways with only seven multiplications. The following is one of them: x2 = x × x, x4 = x2 × x2, x8 = x4 × x4, x8 = x4 × x4, x10 = x8 × x2, x20 = x10 × x10, x30 = x20 × x10, x31 = x30 × x. If division is also available, we can find a even shorter sequence of operations. It is possible to compute x31 with six operations (five multiplications and one division): x2 = x × x, x4 = x2 × x2, x8 = x4 × x4, x16 = x8 × x8, x32 = x16 × x16, x31 = x32 ÷ x. This is one of the most efficient ways to compute x31 if a division is as fast as a multiplication. Your mission is to write a program to find the least number of operations to compute xn by multiplication and division starting with x for the given positive integer n. Products and quotients appearing in the sequence should be x to a positive integer’s power. In others words, x−, for example, should never appear.
Input
The input is a sequence of one or more lines each containing a single integer n. n is positive and less than or equal to . The end of the input is indicated by a zero.
Output
Your program should print the least total number of multiplications and divisions required to compute xn starting with x for the integer n. The numbers should be written each in a separate line without any superfluous characters such as leading or trailing spaces.
Sample Input
Sample Output
Source
求只用乘法和除法最快多少步可以求到x^n
其实答案最大13,但由于树的分支极为庞大在IDDFS的同时,我们还要加2个剪枝
1 如果当前序列最大值m*2^(dep-k)<n则减去这个分支
2 如果出现两个大于n的数则要减去分支。因为里面只有一个有用,我们一定可以通过另外更加短的路径得到答案
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int num;
int way[];
bool dfs(int n,int step){
if(num>step) return false;
if(way[num]==n) return true;
if(way[num]<<(step-num)<n) return false;//强剪枝
for(int i=;i<=num;i++){
num++;
way[num]=way[num-]+way[i];
if(way[num]<= && dfs(n,step)) return true; way[num]=way[num-]-way[i];
if(way[num]> && dfs(n,step)) return true;
num--;
}
return false;
}
int main()
{
int n;
while(scanf("%d",&n)==){
if(n==){
break;
} //迭代加深dfs
int i;
for(i=;;i++){
way[num=]=;
if(dfs(n,i))
break;
}
printf("%d\n",i); }
return ;
}
poj 3134 Power Calculus(迭代加深dfs+强剪枝)的更多相关文章
- POJ 3134 Power Calculus (迭代剪枝搜索)
题目大意:略 题目里所有的运算都是幂运算,所以转化成指数的加减 由于搜索层数不会超过$2*log$层,所以用一个栈存储哪些数已经被组合出来了,不必暴力枚举哪些数已经被搜出来了 然后跑$iddfs$就行 ...
- POJ 2248 - Addition Chains - [迭代加深DFS]
题目链接:http://bailian.openjudge.cn/practice/2248 题解: 迭代加深DFS. DFS思路:从目前 $x[1 \sim p]$ 中选取两个,作为一个新的值尝试放 ...
- POJ-3134-Power Calculus(迭代加深DFS)
Description Starting with x and repeatedly multiplying by x, we can compute x31 with thirty multipli ...
- POJ 3134 Power Calculus ID-DFS +剪枝
题意:给你个数n 让你求从x出发用乘除法最少多少步算出x^n. 思路: 一看数据范围 n<=1000 好了,,暴搜.. 但是 一开始写的辣鸡暴搜 样例只能过一半.. 大数据跑了10分钟才跑出来. ...
- POJ 3134 - Power Calculus
迭代加深 //Twenty #include<cstdio> #include<cstdlib> #include<iostream> #include<al ...
- POJ 3134 - Power Calculus (IDDFS)
题意:求仅仅用乘法和除法最快多少步能够求到x^n 思路:迭代加深搜索 //Accepted 164K 1094MS C++ 840B include<cstdio> #include< ...
- 迭代加深搜索POJ 3134 Power Calculus
题意:输入正整数n(1<=n<=1000),问最少需要几次乘除法可以从x得到x的n次方,计算过程中x的指数要求是正的. 题解:这道题,他的结果是由1经过n次加减得到的,所以最先想到的就是暴 ...
- poj 3134 Power Calculus(IDA*)
题目大意: 用最小的步数算出 x^n 思路: 直接枚举有限步数可以出现的所有情况. 然后加一个A* 就是如果这个数一直平方 所需要的步骤数都不能达到最优 就剪掉 #include < ...
- poj2286The Rotation Game(迭代加深dfs)
链接 把迭代加深理解错了 自己写了半天也没写对 所谓迭代加深,就是在深度无上限的情况下,先预估一个深度(尽量小)进行搜索,如果没有找到解,再逐步放大深度搜索.这种方法虽然会导致重复的遍历 某些结点,但 ...
随机推荐
- (转)重置Mac OS X管理员密码
忘记Mac管理员密码怎么办?别担心,办法总会有的. [方法一] 开机按住option,选择Recovery HD(Snow Leopard插入光盘开机按住C) Snow Leopard系统:进入后在上 ...
- IE浏览器开启对JavaScript脚本的支持
在IE浏览器的"工具"菜单中选择"internet选项",在弹出命令对话框中选择"安全"选项卡.在该选项卡下的"该区域的安全级别& ...
- 解密UML九中关系
将UML中经常使用的九种关系分为了四组进行解释. 一.组合和聚合解说: 同样:均是指有部分组成总体. 不同:聚合是指能够独立存在的个体组成总体.(弱的拥有关系) 组合存在时间上的关系.总体和部分具有同 ...
- Linux安装配置php
1.获取安装文件: http://www.php.net/downloads.php php-5.3.8.tar.gz 获取安装php需要的支持文件:http://download.csdn.net ...
- thinkphp 中 使用七牛云上传
利用七牛云私有空间存储文件 第一步,注册七牛云,创建空间,将空间设为私有 需要记下的东西: AK,SK,bucket 第二步配置ThinkPHP 在config.php添加 'UPLOAD_SITEI ...
- jquery之遍历展示title
//遍历展示title {field:'couponsList',title:'优惠劵类型',width:250,align:'center',sortable:true, formatter:fun ...
- jQuery简介以及jQuery选择器
一 简介 1 定义:jQuery库是JavaScript的封装库 2 优点: 1) : 代码开源 2) : 选择器强大 3) : 完善的Ajax 4) : 浏览器兼容性高 5) : 文档完善(帮助文档 ...
- 验证视图状态 MAC 失败。如果此应用程序由网络场或群集承载,请确保 <machineKey>
转自:http://hi.baidu.com/taotaowyx/blog/item/074bb8d83907bb3233fa1ce6.html 验证视图状态 MAC 失败.如果此应用程序由网络场或群 ...
- FineUI添加隐藏标题
添加隐藏标题 窗体前台: <x:Button ID="btnShowHideHeader" runat="server" Icon="Secti ...
- sqlserver编程基本语法
一.定义变量 --简单赋值 declare @a int set @a=5 print @a --使用select语句赋值 declare @user1 nvarchar(50) select @ ...