三种Blocking类型,这里跟数据流的Buff关系很大:
■■ non-blocking transformations,每一行直接转换输出,没有等待.
■■ partial-blocking transformation,直到存储一定数量的好才输出。
■■ blocking transformation, 在输出前必须先读入所有行。

Logical Row-Level Transformations

Data   flow transformation purpose blocking type
Audit Adds   additional columns to each row based on sys- tem package variables such as ExecutionStartTime and PackageName. N
Cache Transform Allows   you to write data to a cache with the Cache con- nection manager. The data   can then be used by the Lookup transformation. This is useful if you are   using multiple Lookup transformations against the same data, because SSIS   will cache the needed data only once and not for each Lookup component. N
Character Map Performs   common text operations such as Uppercase and allows advanced linguistic   bit-conversion operations. N
Copy Column Duplicates   column values in each row to a new named column. N
Data Conversion Creates   a new column in each row based on a new data type converted from the existing   column. An example is converting text to numeric data or text to Unicode   text. N
Data   flow transformation purpose blocking type
Derived Column Creates   or replaces a column for each row based on a specified SSIS expression. This   is the most often used logical row-level transformation because it enables   the replacement of column values or the creation of
    new columns based on existing columns, variables, and parameters.
N
Export Column Exports   binary large objects (BLOB) columns, one row at a time, to a file. N
Import Column Loads   binary files such as images into the pipeline; intend- ed for a BLOB data   type destination. N
Row Count Tracks   the number of rows that flow through the transfor- mation and stores the   number in a package variable after the final row. N

Multi-Input and Multi-Output Transformations

Data   flow transformation purpose blocking type
CDC Splitter Splits   a single flow of changed rows from the CDC source component into multiple   data flows based on the type of the source data change (that is, whether it   is an insert, update,
    or delete operation). CDC Splitter routes the data based on the __$operation column into three   possible outputs. this transformation is like a specific version of the   Conditional Split transformation that automatically handles the standard   values of the __$operation column.
N
Conditional Split Routes   or filters data based on a Boolean expression to one or more outputs, from   which each row can be sent out only one output path. N
Lookup Performs   a lookup operation between a current row and an external dataset on one or   more columns. Additional columns can be added to the data flow from the   external dataset. N
Merge Combines   the rows of two similar sorted inputs, one on top of the other, based on a   defined sort key. P
Merge Join Joins   the rows of two sorted inputs based on a defined join column or columns,   adding columns from each source. P
Multicast Generates   one or mode identical outputs, from which every row is sent out every output.   This transformation creates a logical copy of the data. N
Union All Combines   one or more similar inputs, stacking rows one on top of another, based on   matching columns. The number of rows in the output of Union All is the   combined row counts of all the inputs. P

Multi-Row Transformations

Data   flow transformation purpose blocking type
Aggregate Associates   rows based on defined grouping and generates aggregations such as SUM, MAX,   MIN, and COUNT. B
Percent Sampling Filters   the input rows by allowing only a defined percent to be passed to the output   path. N
Pivot Takes   multiple input rows and pivots the rows to generate an output with more   columns based on the original row values. P
Row Sampling Generates   a fixed number of rows, sampling the data from the entire input, no matter   how much larger than the defined output the input is. B
Sort Orders   the input based on defined sort columns and sort directions. The Sort   transformation also allows the removal of duplicates across the sort columns. B
Unpivot Takes   a single row and generates multiple rows, moving column values to the new row   based on defined columns. P

Advanced Data-Preparation Transformations

Data   flow transformation purpose blocking type
DQS Cleansing Validates   rows by automatically per- forming data cleansing using an exist- ing   knowledge base in Data Quality Services (DQS). P
OLE DB Command Performs   database operations such as updates or deletions, one row at a time, based on   mapped parameters from input rows. N
Slowly Changing Dimension Generates   transformations necessary to support loading dimension tables  in data warehouse scenarios. This   transformation handles SCD (Slowly Changing Dimension) Type 1 and Type 2 and   also has support for inferred members. Chapter 7 focuses on this   transformation. N
Data Mining Query Applies   input rows against a data min- ing model for prediction. P
Fuzzy Grouping Performs   de-duplication based on similarity of string values in selected columns. B
Fuzzy Lookup Joins   a data flow input to a reference table based on column similarity. The   Similarity Threshold setting specifies the closeness of allowed matches—a   high setting means that matching val- ues are close in similarity. B
Script Component Applies   custom .NET scripting capabilities against rows, columns, inputs, and outputs   in the data flow pipeline. This is the most powerful component. Chapter 19,   “Implementing Custom Code in SSIS Packages” looks at some of its   possibilities. N
Term Extraction Analyzes   text input columns for English-language nouns and noun phrases. P
Term Lookup Analyzes   text input columns against a user-defined set of words for associa- tion. P

SSIS 阻塞,半阻塞和全阻塞 (Non-blocking, semi-blocking and Fully-blocking) transformations清单的更多相关文章

  1. 微软BI 之SSIS 系列 - 理解Data Flow Task 中的同步与异步, 阻塞,半阻塞和全阻塞以及Buffer 缓存概念

    开篇介绍 在 SSIS Dataflow 数据流中的组件可以分为 Synchronous 同步和 Asynchronous 异步这两种类型. 同步与异步 Synchronous and Asynchr ...

  2. php使用flock阻塞写入文件和非阻塞写入文件的实例讲解

    php使用flock阻塞写入文件和非阻塞写入文件的实例讲解: 阻塞写入代码:(所有程序会等待上次程序执行结束才会执行,30秒会超时) <?php $file = fopen("test ...

  3. 同步I/O、异步I/O与阻塞I/O、非阻塞I/O的区别

    一.I/O I/O (Input/Output,输入/输出)即数据的读取(接收)或写入(发送)操作. 通常用户进程中的一个完整I/O分为两阶段:用户进程空间<-->内核空间.内核空间< ...

  4. (原创)JAVA阻塞队列LinkedBlockingQueue 以及非阻塞队列ConcurrentLinkedQueue 的区别

    阻塞队列:线程安全 按 FIFO(先进先出)排序元素.队列的头部 是在队列中时间最长的元素.队列的尾部 是在队列中时间最短的元素.新元素插入到队列的尾部,并且队列检索操作会获得位于队列头部的元素.链接 ...

  5. 深入理解非阻塞同步IO和非阻塞异步IO

    这两篇文章分析了Linux下的5种IO模型 http://blog.csdn.net/historyasamirror/article/details/5778378 http://blog.csdn ...

  6. java 多线程阻塞队列 与 阻塞方法与和非阻塞方法

    Queue是什么 队列,是一种数据结构.除了优先级队列和LIFO队列外,队列都是以FIFO(先进先出)的方式对各个元素进行排序的.无论使用哪种排序方式,队列的头都是调用remove()或poll()移 ...

  7. 定时器详解和应用、js加载阻塞、css加载阻塞

    1.setTimeout().setInterval()详解和应用 1.1 详解: setTimeout.setInterval执行时机 1.2 存在问题: setInterval重复定时器可能存在的 ...

  8. Python之阻塞IO模型与非阻塞IO模型

    Python之阻塞IO模型与非阻塞IO模型 IO模型 1 阻塞IO: 全程阻塞 2 非阻塞IO: 发送多次系统调用: 优点:wait for data时无阻塞 缺点:1 系统调用太多 2 数据不是实时 ...

  9. IO阻塞模型、IO非阻塞模型、多路复用IO模型

    IO操作主要包括两类: 本地IO 网络IO 本地IO:本地IO是指本地的文件读取等操作,本地IO的优化主要是在操作系统中进行,我们对于本地IO的优化作用十分有限 网络IO:网络IO指的是在进行网络操作 ...

  10. 阻塞I/O、非阻塞I/O和I/O多路复用、怎样理解阻塞非阻塞与同步异步的区别?

    “阻塞”与"非阻塞"与"同步"与“异步"不能简单的从字面理解,提供一个从分布式系统角度的回答.1.同步与异步 同步和异步关注的是消息通信机制 (syn ...

随机推荐

  1. DjangoORM一对多&多对多操作

    简要说明 通过操作对象的方式操作数据库 详细步骤 models.py的结构是: 如果models.py中外键定义没有写 related_name='student_teacher', 可以直接用 st ...

  2. nyoj 528 找球号(三)(哈希)

    点解:题目链接 两种办法,1是使用容器set做 2必须知道这个结论,  突然感觉数论很强大啊,,,, /*//set容器处理 出一次加进去,再出现删掉,这个最后留下的就是那个只出现基数次的 #incl ...

  3. Mysql mysqlimport 导入数据

    在mysql 数据库中可以用 mysqlimport 工具来实现数据的导入!mysqlimport 导入数据简单,但是这个也要满足一定的条件 1.既然是把数据导入到数据库,你总有一个数据库用户账号吧 ...

  4. BZOJ 3498 PA2009 Cakes(三元环处理)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3498 [题目大意] N个点m条边,每个点有一个点权a. 对于任意一个三元环(j,j,k ...

  5. [每日一题] OCP1z0-047 :2013-08-22 正则表达式---[^Ale|ax.r$]'

    正确答案:DE 一.Oracle正则表达式的相关知识点 '[^Ale|ax.r$]': ^:匹配行的开始字符 $:匹配行的结束字符 []:方括号表示指定一个匹配列表,该列表匹配列表中显示的任何表达式. ...

  6. apache kafka系列之性能优化架构分析

    apache kafka中国社区QQ群:162272557 Apache kafka性能优化架构分析 应用程序优化:数据压缩 watermark/2/text/aHR0cDovL2Jsb2cuY3Nk ...

  7. xcode 资源管理

    我个人觉得这么理解就够了 其他的以后再说

  8. Velocity入门系列

    Velocity介绍 Velocity是一个java模板引擎,通过简洁的语法可以返回动态内容给浏览器使用,本系类是基于velocity官方文档(就是照着翻译,同时对不清楚的地方进行详细讲解),其实技术 ...

  9. VS2015+MySql EF的配置问题

    自己做笔记,防止以后各种找! 去MySql下载最新版的安装包,MySql For Windows全部就可以了,根据开发需求安装功能,然后安装MySql的步骤上网去找一大堆. 注意事项: 第一:必须把V ...

  10. android中像素单位dp、px、pt、sp的比较

    dp(dip): device independent pixels(设备独立像素). 不同设备有不同的显示效果,这个和设备硬件有关,一般我们为了支持WVGA.HVGA和QVGA 推荐使用这个,不依赖 ...