http://wikioi.com/problem/1576/

经典的动态规划。我写了个o(n^2)的DP方法。

PPT:http://wenku.baidu.com/view/bd290294dd88d0d233d46ac7.html

线型动态规划问题,最典型的特征就是状态都在一条线上,并且位置固定,问题一般都规定只能从前往后取状态,解决的办法是根据前面的状态特征,选取最优状态作为决策进行转移。
设前i个点的最优值,研究前i-1个点与前i个点的最优值,
利用第i个点决策转移,如下图。
状态转移方程一般可写成:
fi(k) = min{ fi-1 or j( k’) + u(i,j) or u(i,i-1) }

#include <iostream>
using namespace std;
int arr[5000+10];
int inc[5000+10];
int main()
{
int n;
cin >> n;
for (int i = 0; i < n; i++)
{
cin >> arr[i];
}
// assume n >= 1
inc[0] = 1;
for (int i = 1; i < n; i++)
{
int max = 0;
for (int j = i-1; j >= 0; j--)
{
if (arr[i] > arr[j] && inc[j] > max) max = inc[j];
}
inc[i] = max + 1;
}
cout << inc[n-1];
return 0;
}

但其实还有个o(nlogn)的方法。因为优化DP有两种方法,一种就是优化状态数,比如棋盘型有时能把四维优化成三维;一种就是优化转移步骤,这里可以把转移步骤的复杂度由n优化成log n。

一种是采用线段树的数据结构,那么从左像右扫,一边扫一边更新区间的最值,然后也查询之前的最值,由于线段树的操作都收log n的,所以最终n*logn

第二种就是采用单调序列的数据结构,其操作如下:

开辟一个栈b,每次取栈顶元素s和读到的元素a做比较,如果a>s,则置为栈顶;如果a<s,则二分查找栈中的比a大的第1个数,并替换。最终栈的大小即为最长递增子序列为长度
考察b栈内每个元素的含义,b[i] 表示所有长度为i的上升子序列中最小的最后一个数.
·举例:原序列为3,4,5,2,4,2
栈为3,4,5,此时读到2,则用2替换3,得到栈中元素为2,4,5,再读4,用4替换5,得到2,4,4,再读2,得到最终栈为2,2,4,最终得到的解是:
长度为1的上升子序列中最小的最后一个数是2 (2)
长度为2的上升子序列中最小的最后一个数是2 (2,2)长度为3的上升子序列中最小的最后一个数是4 (3,4,4)
可知没有长度为4的上升子序列,最长递增子序列长度为3. (3,4,4)

参见:http://www.slyar.com/blog/longest-ordered-subsequence.html

这也是很好理解的,对于x和y,如果x < y且Stack[y] < Stack[x],用Stack[x]替换Stack[y],此时的最长序列长度没有改变但序列Q的''潜力''增大了。

单调序列这里还有一个简单应用,可以练习一下:http://poj.org/problem?id=2823

[wikioi]最长严格上升子序列的更多相关文章

  1. wikioi 1576 最长严格上升子序列

    简单的最长严格上升子序列的题 dp[i]表示到a[i]这个数为最后的时候最大的长度是多少 然后就差不多了吧~ #include <cstdio> #include <cmath> ...

  2. lintcode 最长上升连续子序列 II(二维最长上升连续序列)

    题目链接:http://www.lintcode.com/zh-cn/problem/longest-increasing-continuous-subsequence-ii/ 最长上升连续子序列 I ...

  3. 最长公共上升子序列(codevs 2185)

    题目描述 Description 熊大妈的奶牛在小沐沐的熏陶下开始研究信息题目.小沐沐先让奶牛研究了最长上升子序列,再让他们研究了最长公共子序列,现在又让他们要研究最长公共上升子序列了. 小沐沐说,对 ...

  4. 最长公共上升子序列(LCIS)

    最长公共上升子序列慕名而知是两个字符串a,b的最长公共递增序列,不一定非得是连续的.刚开始看到的时候想的是先用求最长公共子序列,然后再从其中找到最长递增子序列,可是仔细想一想觉得这样有点不妥,然后从网 ...

  5. 最长不下降子序列(LIS)

    最长上升子序列.最长不下降子序列,解法差不多,就一点等于不等于的差别,我这里说最长不下降子序列的. 有两种解法. 一种是DP,很容易想到,就这样: REP(i,n) { f[i]=; FOR(j,,i ...

  6. 最长不下降子序列 O(nlogn) || 记忆化搜索

    #include<stdio.h> ] , temp[] ; int n , top ; int binary_search (int x) { ; int last = top ; in ...

  7. tyvj 1049 最长不下降子序列 n^2/nlogn

    P1049 最长不下降子序列 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数第二行n个数 输出格式 ...

  8. 最长不下降子序列的O(n^2)算法和O(nlogn)算法

    一.简单的O(n^2)的算法 很容易想到用动态规划做.设lis[]用于保存第1~i元素元素中最长不下降序列的长度,则lis[i]=max(lis[j])+1,且num[i]>num[j],i&g ...

  9. 最长不下降子序列//序列dp

    最长不下降子序列 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数第二行n个数 输出格式 最长不下降 ...

随机推荐

  1. 制作win7+ubuntu +winPE+CDlinux多系统启动U盘

    制作前期准备工作 1.需要软件 grub4dos(http://sourceforge.net/projects/grub4dos/files/) UltraISO(http://cn.ezbsyst ...

  2. JQuery AJAX请求aspx后台方法

    利用JQuery封装好的AJAX来请求aspx的后台方法,还是比较方便的,但是要注意以下几点: 1.首先要在方法的顶部加上[WenMethod]的特性(此特性要引入using System.Web.S ...

  3. Fetch的使用

    import React,{ Component } from 'react'; import { AppRegistry, ListView, Image, Text, StyleSheet, Vi ...

  4. Unity3D 中3D刚体组件的力

    一般一个物体除了手动添加刚体受到重力作用外,还可以给该刚体添加一个其他的力. 这里就要涉及到一个恒定力(Constant Force)组件 首先要去掉物体的重力(因为重力是刚体组件中默认的一个向下的力 ...

  5. java Spring 在WEB应用中的实例化

    .前面讲解的都是通过直接读取配置文件,进行的实例化ApplicationContext AbstractApplicationContext app = new ClassPathXmlApplica ...

  6. temporary

    private void OnAttendeeConnected(object pObjAttendee) { IRDPSRAPIAttendee pAttendee = pObjAttendee a ...

  7. PHP简单MVC架构

    http://blog.csdn.net/haiqiao_2010/article/details/12166283 由于需要搭建一个简单的框架来进行API接口开发,所以简单的mvc框架当然是首选.最 ...

  8. 关于tableView的那些坑(一)—— automaticallyAdjustsScrollViewInsets属性

    最近用tabbar来切换控制器,用childViewController来实现多控制器管理,多列表切换,在子控制器中设置了automaticallyAdjustsScrollViewInsets属性为 ...

  9. iOS开发中常用的分类方法---UIImage+Category

    在开发中使用分类对原有的系统类进行方法扩展,是增强系统原有类功能的常见做法. /** * 自由拉伸一张图片 * * @param name 图片名字 * @param left 左边开始位置比例 值范 ...

  10. IAP (In-App Purchase)中文文档

    内容转自:http://yarin.blog.51cto.com/1130898/549141 一.In App Purchase概览 Store Kit代表App和App Store之间进行通信.程 ...