BZOJ 4710 容斥原理+dp
//By SiriusRen
#include <cstdio>
using namespace std;
int n,m,a[1005];
typedef long long ll;
ll C[2005][2005],f[2005][2005],g[2005],mod=1000000007ll;
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)scanf("%d",&a[i]);
for(int i=1;i<=2000;i++){
C[i][0]=C[i][i]=1ll;
for(int j=1;j<i;j++)
C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
}
for(int i=1;i<=n;i++)f[0][i]=1;
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
f[i][j]=f[i-1][j]*C[a[i]+j-1][j-1]%mod;
for(int i=1;i<=n;i++){
g[i]=f[m][i];
for(int j=1;j<i;j++)
g[i]=((g[i]-C[i][j]*g[j])%mod+mod)%mod;
}
printf("%lld\n",g[n]);
}
二刷
2018.8.1
//By SiriusRen
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int p=,N=;
int n,m,fac[N],inv[N],tot,a[N],f[N],finv[N],ans;
int C(int x,int y){return fac[x]*finv[y]%p*finv[x-y]%p;}
int pow(int a,int b){int r=;for(;b;b>>=,a=a*a%p)if(b&)r=r*a%p;return r;}
signed main(){
fac[]=fac[]=inv[]=inv[]=finv[]=finv[]=;
scanf("%lld%lld",&n,&m);
for(int i=;i<=m;i++)scanf("%lld",&a[i]),tot+=a[i];
for(int i=;i<=tot;i++)
fac[i]=fac[i-]*i%p,inv[i]=(p-p/i*inv[p%i])%p,finv[i]=finv[i-]*inv[i]%p;
for(int i=;i<=n;i++){
f[i]=;
for(int j=;j<=m;j++)f[i]=f[i]*C(a[j]+i-,i-)%p;
}
for(int i=;i<n;i++)ans=(ans+(i&?-:)*C(n,i)*f[n-i])%p;
printf("%lld\n",(ans+p)%p);
}
BZOJ 4710 容斥原理+dp的更多相关文章
- 【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 99 Solved: 65 Description JYY 带 ...
- BZOJ 3622: 已经没有什么好害怕的了 [容斥原理 DP]
3622: 已经没有什么好害怕的了 题意:和我签订契约,成为魔法少女吧 真·题意:零食魔女夏洛特的结界里有糖果a和药片b各n个,两两配对,a>b的配对比b>a的配对多k个学姐就可能获胜,求 ...
- BZOJ 4710: [Jsoi2011]分特产 [容斥原理]
4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...
- BZOJ 1042:[HAOI2008]硬币购物(容斥原理+DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1042 [题目大意] 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4. 某人去 ...
- bzoj 1042: [HAOI2008]硬币购物【容斥原理+dp】
当然是容斥啦. 用dp预处理出\( f[i] \),表示在\( i \)价格时不考虑限制的方案数,转移方程是\( f[i]+=f[i-c[j]] \),用状压枚举不满足的状态容斥一下即可. #incl ...
- BZOJ 2560(子集DP+容斥原理)
2560: 串珠子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 757 Solved: 497[Submit][Status][Discuss] ...
- bzoj 4818: [Sdoi2017]序列计数【容斥原理+dp+矩阵乘法】
被空间卡的好惨啊---- 参考:http://blog.csdn.net/coldef/article/details/70305596 容斥,\( ans=ans_{没有限制}-ans{没有质数} ...
- 2018.07.13 [HNOI2015]落忆枫音(容斥原理+dp)
洛谷的传送门 bzoj的传送门 题意简述:在DAG中增加一条有向边,然后询问新图中一共 有多少个不同的子图为"树形图". 解法:容斥原理+dp,先考虑没有环的情况,经过尝试不难发现 ...
- [CF245H] Queries for Number of Palindromes (容斥原理dp计数)
题目链接:http://codeforces.com/problemset/problem/245/H 题目大意:给你一个字符串s,对于每次查询,输入为一个数对(i,j),输出s[i..j]之间回文串 ...
随机推荐
- vue-cli简介(中文翻译)
vue-cli是一个简单的vuejs脚手架命令行工具. 安装 准备:Node.js(>=4.x,推荐6.x版本),npm版本3以上和Git. $npm install -g vue-cli 使用 ...
- 几个概念:x86、x86-64和IA-32、IA-64
最近在学习操作系统方面的知识,学习操作系统难免要和CPU打交道,虽然现在CPU和操作系统不像计算机发展初期一样是绑定在一起的,但是大家都知道操作系统和CPU Architecture的联系是很紧密的, ...
- Spark的协同过滤.Vs.Hadoop MR
基于物品的协同过滤推荐算法案例在TDW Spark与MapReudce上的实现对比,相比于MapReduce,TDW Spark执行时间减少了66%,计算成本降低了40%. 原文链接:http://w ...
- Cython入门.VS.C++
原文链接:http://blog.csdn.net/gzlaiyonghao/article/details/4561611 作者:perrygeo 译者:赖勇浩(http://laiyonghao. ...
- ionic3、Angular4 定时器的使用
// 声明变量 applicationInterval:any; // 定时器 // 使用定时器,每秒执行一次 ionViewDidEnter(){ let that = this; let appl ...
- PHP Base64 加密 & 解密
<?php 加密: $cany = 'getshell.top'; #定义要加密的字符串 echo base64_encode($cany); #输出加密后的字符串 解密: $cany = 'Z ...
- codeforce 788 A. Funtions again
链接 A. Functions again 题意 这是一道求最大连续子序列和变形题. 做法 先将abs(a[i+1]-a[i]算出来,然后用两个数组dp[i],cp[i],dp维护其最大值,cp维护其 ...
- Select, Poll,Epoll
Date: 2019-06-19 Author: Sun 1. Select select最早于1983年出现在4.2BSD中,它通过一个select()系统调用来监视多个文件描述符的数组,当se ...
- ListUtil常用操作
/** * 获取列表总页数 */ public static <T> int getListPages(List<T> list,int pageNum,int pageSiz ...
- 前端html之------>Table实现表头固定
文章来源于:https://www.cnblogs.com/dacuotecuo/p/3657779.html,请尊重原创,转载请注明出处. 说明:这里主要实现了表头的固定和上下滚动的滑动实现:时间的 ...