What is your first plan of action when working on a new competition?

理解竞赛,数据,评价标准。

建立交叉验证集。

制定、更新计划。

检索类似竞赛和相关论文。

What does your iteration cycle look like?

Sacrifice a couple of submissions in the beginning of the contest to understand the importance of the different algorithms -- save energy for last 100 meters.

Do the following process for multiple models

  • Select a model and do a recursive loop with the following steps:

    • Transform data (scaling, log(x+1) values, treat missing values, PCA or none)
    • Optimize hyper parameters of the model
    • Do feature engineering for that model (as in generate new features)
    • Do features' selection for that model (as in reducing them)
    • Redo previous steps as optimum parameters are likely to have changed slightly
  • Save hold-out predictions to be used later (meta-modelling)
  • Check consistency of CV scores with leaderboard. If problematic, re-assess cross-validation process and re-do steps

Create partnerships. Ideally you look for people that are likely to have taken different approaches than you have. Historically (in contrast) I was looking for friends; people I can learn from and people I can have fun with - not so much winning.

Find a good way to ensemble

What does your iteration cycle look like?

It depends on the competition and I usually go through a few stages.

At the beginning I focus on data exploration and try some basic approaches so I iterate pretty quickly.

Once the obvious ideas are exhausted I usually slow down and do some research into the domain -- reading papers, forum post, etc. If I get an idea I would then implement it and submit it to the public LB.

My iteration cycle usually is short -- I rarely work on feature engineering that requires more than a few hours of coding for a particular feature.

My personal experience is that very complicated features usually do not work well -- possibly because of my buggy code.

What does your iteration cycle look like?

Read the overview and data description of the competition carefully

Find similar Kaggle competitions. As a relatively new comer, I have collected and done a basic analysis of all Kaggle competitions.

Read solutions of similar competitions.

Read papers to make sure I don’t miss any progress in the field.

Analyze the data and build a stable CV.

Data pre-processing, feature engineering, model training.

Result analysis such as prediction distribution, error analysis, hard examples.

Elaborate models or design a new model based on the analysis.

Based on data analysis and result analysis, design models to add diversities or solve hard samples.

Ensemble.

Return to a former step if necessary.

What does your iteration cycle look like?

I always prepare the dataset and apply feature engineering as much as I can, then I choose a training algorithm and optimize hyperparameters based on a cross validation score. If a model is good and stable I save the trainset and testset predictions. Then I start all over again using another training algorithm or model. When I have a handful of good model predictions, I start ensembling at the second level of training.

What does your iteration cycle look like?

Understand the dataset. At least enough to build a consistent validation set.

Build a consistent validation set and test its relationship with the leaderboard score.

Build a very simple model.

Look for approaches used in similar competitions in the past.

Start feature engineering, step by step to create a strong model.

Think about ensembling, be it by creating alternate versions of the feature set or using different modeling techniques (xgb, rf, linear regression, neural nets, factorization machines, etc).

What are your favorite machine learning algorithms?

ridge regression, resnet-50, GBT, XGB

What is your approach to hyper-tuning parameters?

用网格搜索。

基于交叉验证集。

查看类似竞赛,相关论文中类似问题下的设置。

对数据和算法的理解和经验。

观察调参前后的输出分布,受影响样本等。

In a few words, what wins competitions?

好的验证集,好的模型和特征,模型融合,从别的竞赛和论文中学习,遵守计划。

Kaggle竞赛顶尖选手经验汇总的更多相关文章

  1. 《Python机器学习及实践:从零开始通往Kaggle竞赛之路》

    <Python 机器学习及实践–从零开始通往kaggle竞赛之路>很基础 主要介绍了Scikit-learn,顺带介绍了pandas.numpy.matplotlib.scipy. 本书代 ...

  2. 如何使用Python在Kaggle竞赛中成为Top15

    如何使用Python在Kaggle竞赛中成为Top15 Kaggle比赛是一个学习数据科学和投资时间的非常的方式,我自己通过Kaggle学习到了很多数据科学的概念和思想,在我学习编程之后的几个月就开始 ...

  3. 初窥Kaggle竞赛

    初窥Kaggle竞赛 原文地址: https://www.dataquest.io/mission/74/getting-started-with-kaggle 1: Kaggle竞赛 我们接下来将要 ...

  4. 用python参加Kaggle的些许经验总结(收藏)

    Step1: Exploratory Data Analysis EDA,也就是对数据进行探索性的分析,一般就用到pandas和matplotlib就够了.EDA一般包括: 每个feature的意义, ...

  5. 《机器学习及实践--从零开始通往Kaggle竞赛之路》

    <机器学习及实践--从零开始通往Kaggle竞赛之路> 在开始说之前一个很重要的Tip:电脑至少要求是64位的,这是我的痛. 断断续续花了个把月的时间把这本书过了一遍.这是一本非常适合基于 ...

  6. 由Kaggle竞赛wiki文章流量预测引发的pandas内存优化过程分享

    pandas内存优化分享 缘由 最近在做Kaggle上的wiki文章流量预测项目,这里由于个人电脑配置问题,我一直都是用的Kaggle的kernel,但是我们知道kernel的内存限制是16G,如下: ...

  7. kaggle竞赛分享:NFL大数据碗(上篇)

    kaggle竞赛分享:NFL大数据碗 - 上 竞赛简介 一年一度的NFL大数据碗,今年的预测目标是通过两队球员的静态数据,预测该次进攻推进的码数,并转换为该概率分布: 竞赛链接 https://www ...

  8. Kaggle竞赛入门:决策树算法的Python实现

    本文翻译自kaggle learn,也就是kaggle官方最快入门kaggle竞赛的教程,强调python编程实践和数学思想(而没有涉及数学细节),笔者在不影响算法和程序理解的基础上删除了一些不必要的 ...

  9. Kaggle竞赛入门(二):如何验证机器学习模型

    本文翻译自kaggle learn,也就是kaggle官方最快入门kaggle竞赛的教程,强调python编程实践和数学思想(而没有涉及数学细节),笔者在不影响算法和程序理解的基础上删除了一些不必要的 ...

随机推荐

  1. mysql中explain用法和结果的含义

    explain  select * from user explain select * from user explain extended select * from user explain e ...

  2. Google面试题-高楼扔鸡蛋问题

    本文由 @lonelyrains 出品.转载请注明出处.  文章链接: http://blog.csdn.net/lonelyrains/article/details/46428569 高楼扔鸡蛋问 ...

  3. Shell脚本递归打印指定文件夹中全部文件夹文件

    #!/bin/bash #递归打印当前文件夹下的全部文件夹文件. PRINTF() { ls $1 | while read line #一次读取每一行放到line变量中 do [ -d $1/$li ...

  4. linux下怎样将sheduler绑定到制定的cpu核上

    作者:张昌昌   1.顺序绑定 erl +sbt db 是按从前到后的顺序来绑定调度器的,如: erl +sbt db +S 3含义是启动erlang虚拟机,开启3个调度器,按顺序绑定在0,1.2号核 ...

  5. Binding Enum to ComboBox

    1.添加MarkupExtension public class EnumToSourceExtension : MarkupExtension { private Type _type; publi ...

  6. P1290sk抓螃蟹

    背景 sk,zdq想在hzy生日之际送hzy几只螃蟹吃... 描述 现有n只螃蟹,每个在一个二维作标上,保证没有任何两个螃蟹重合.sk伸手抓螃蟹 了,他怕螃蟹的攻击,当他捉一只螃蟹时,其他螃蟹都朝这只 ...

  7. [HTML&CSS] 条件注释判断浏览器

    <!--[if !IE]><!--> 除IE外都可识别 <!--<![endif]--><!--[if IE]> 所有的IE可识别 <![e ...

  8. POJ3087 Shuffle'm Up

    题目: 现有字符串s1.s2.s12,其中s1.s2的长度为len,s12的长度为2*len. 是否可以通过一些操作使s1和s2转换合并成s12? 变换的操作规则如下: 假设s1=11111,s2=0 ...

  9. markdown 计算器

    计算器 分四种运算(加减乘除).括号.去除最后括号.验证等式是否计算完成 bracket = re.compile(r'\([^()]+\)') # 找括号 multiplys = re.compil ...

  10. 单元测试之Mock

    为什么需要Mock. 真实对象具有不确定的行为.所以会产生不可预测的结果. 真实对象很难被创建. 真实对象的某些行为很难被触发(如网络错误). 真实对象令程序的运行速度很慢. 真实对象有(或者是)用户 ...