Kaggle竞赛顶尖选手经验汇总
What is your first plan of action when working on a new competition?
理解竞赛,数据,评价标准。
建立交叉验证集。
制定、更新计划。
检索类似竞赛和相关论文。
What does your iteration cycle look like?
Sacrifice a couple of submissions in the beginning of the contest to understand the importance of the different algorithms -- save energy for last 100 meters.
Do the following process for multiple models
- Select a model and do a recursive loop with the following steps:
- Transform data (scaling, log(x+1) values, treat missing values, PCA or none)
- Optimize hyper parameters of the model
- Do feature engineering for that model (as in generate new features)
- Do features' selection for that model (as in reducing them)
- Redo previous steps as optimum parameters are likely to have changed slightly
- Save hold-out predictions to be used later (meta-modelling)
- Check consistency of CV scores with leaderboard. If problematic, re-assess cross-validation process and re-do steps
Create partnerships. Ideally you look for people that are likely to have taken different approaches than you have. Historically (in contrast) I was looking for friends; people I can learn from and people I can have fun with - not so much winning.
Find a good way to ensemble
What does your iteration cycle look like?
It depends on the competition and I usually go through a few stages.
At the beginning I focus on data exploration and try some basic approaches so I iterate pretty quickly.
Once the obvious ideas are exhausted I usually slow down and do some research into the domain -- reading papers, forum post, etc. If I get an idea I would then implement it and submit it to the public LB.
My iteration cycle usually is short -- I rarely work on feature engineering that requires more than a few hours of coding for a particular feature.
My personal experience is that very complicated features usually do not work well -- possibly because of my buggy code.
What does your iteration cycle look like?
Read the overview and data description of the competition carefully
Find similar Kaggle competitions. As a relatively new comer, I have collected and done a basic analysis of all Kaggle competitions.
Read solutions of similar competitions.
Read papers to make sure I don’t miss any progress in the field.
Analyze the data and build a stable CV.
Data pre-processing, feature engineering, model training.
Result analysis such as prediction distribution, error analysis, hard examples.
Elaborate models or design a new model based on the analysis.
Based on data analysis and result analysis, design models to add diversities or solve hard samples.
Ensemble.
Return to a former step if necessary.
What does your iteration cycle look like?
I always prepare the dataset and apply feature engineering as much as I can, then I choose a training algorithm and optimize hyperparameters based on a cross validation score. If a model is good and stable I save the trainset and testset predictions. Then I start all over again using another training algorithm or model. When I have a handful of good model predictions, I start ensembling at the second level of training.
What does your iteration cycle look like?
Understand the dataset. At least enough to build a consistent validation set.
Build a consistent validation set and test its relationship with the leaderboard score.
Build a very simple model.
Look for approaches used in similar competitions in the past.
Start feature engineering, step by step to create a strong model.
Think about ensembling, be it by creating alternate versions of the feature set or using different modeling techniques (xgb, rf, linear regression, neural nets, factorization machines, etc).
What are your favorite machine learning algorithms?
ridge regression, resnet-50, GBT, XGB
What is your approach to hyper-tuning parameters?
用网格搜索。
基于交叉验证集。
查看类似竞赛,相关论文中类似问题下的设置。
对数据和算法的理解和经验。
观察调参前后的输出分布,受影响样本等。
In a few words, what wins competitions?
好的验证集,好的模型和特征,模型融合,从别的竞赛和论文中学习,遵守计划。
Kaggle竞赛顶尖选手经验汇总的更多相关文章
- 《Python机器学习及实践:从零开始通往Kaggle竞赛之路》
<Python 机器学习及实践–从零开始通往kaggle竞赛之路>很基础 主要介绍了Scikit-learn,顺带介绍了pandas.numpy.matplotlib.scipy. 本书代 ...
- 如何使用Python在Kaggle竞赛中成为Top15
如何使用Python在Kaggle竞赛中成为Top15 Kaggle比赛是一个学习数据科学和投资时间的非常的方式,我自己通过Kaggle学习到了很多数据科学的概念和思想,在我学习编程之后的几个月就开始 ...
- 初窥Kaggle竞赛
初窥Kaggle竞赛 原文地址: https://www.dataquest.io/mission/74/getting-started-with-kaggle 1: Kaggle竞赛 我们接下来将要 ...
- 用python参加Kaggle的些许经验总结(收藏)
Step1: Exploratory Data Analysis EDA,也就是对数据进行探索性的分析,一般就用到pandas和matplotlib就够了.EDA一般包括: 每个feature的意义, ...
- 《机器学习及实践--从零开始通往Kaggle竞赛之路》
<机器学习及实践--从零开始通往Kaggle竞赛之路> 在开始说之前一个很重要的Tip:电脑至少要求是64位的,这是我的痛. 断断续续花了个把月的时间把这本书过了一遍.这是一本非常适合基于 ...
- 由Kaggle竞赛wiki文章流量预测引发的pandas内存优化过程分享
pandas内存优化分享 缘由 最近在做Kaggle上的wiki文章流量预测项目,这里由于个人电脑配置问题,我一直都是用的Kaggle的kernel,但是我们知道kernel的内存限制是16G,如下: ...
- kaggle竞赛分享:NFL大数据碗(上篇)
kaggle竞赛分享:NFL大数据碗 - 上 竞赛简介 一年一度的NFL大数据碗,今年的预测目标是通过两队球员的静态数据,预测该次进攻推进的码数,并转换为该概率分布: 竞赛链接 https://www ...
- Kaggle竞赛入门:决策树算法的Python实现
本文翻译自kaggle learn,也就是kaggle官方最快入门kaggle竞赛的教程,强调python编程实践和数学思想(而没有涉及数学细节),笔者在不影响算法和程序理解的基础上删除了一些不必要的 ...
- Kaggle竞赛入门(二):如何验证机器学习模型
本文翻译自kaggle learn,也就是kaggle官方最快入门kaggle竞赛的教程,强调python编程实践和数学思想(而没有涉及数学细节),笔者在不影响算法和程序理解的基础上删除了一些不必要的 ...
随机推荐
- Tp5 一次修改多个数据update
//商城矿机设置 public function shop(){ if(!request()->isPost()){ return $this->fetch(); }else { $myd ...
- 使用idea搭建maven项目时 java目录下的xml文件没有加载的解决方法
今天在idea集成开发环境下 使用maven搭建了ssm项目,遇到了3个问题 首先我们先复习一下知识点: 第一步:在web.xml中配置spring监听器 <!-- spring监听器 加载sp ...
- AM335X开发板+4G模块 调试小结
1.找到开发版配套资料中的linux内核源码包linux-3.2.0-Litev2.3-nand-2017-3-24.tar.gz 2.解压内核源码包,打开内核源码文件 option.c(路径为 dr ...
- JS-正则表达式实战篇(Angel著)
JS-正则表达式实战篇(Angel著) 大家会看到我最新的系列博客都是spring boot怎么突然来了一个js的呢,而且这个貌似对大家而言好像很简单的嘛,所以在写之前我说说我写这一篇文章的初衷.公司 ...
- C#中数组的使用
1.简单数组: 声明: int[] myArray 初始化: 声明了数组后,就必须为数组分配内存来保存数组的全部元素.特别注意的是数组是引用类型.故须要使用new运算符来指定数组中元素的类型和数量来初 ...
- Oracle创建自增字段方法-ORACLE SEQUENCE的简介
曾经最头疼的就是对表插入数据的时候,有主键问题. 由于主键不可以反复,所以得用函数自己定义一个规则生成不反复的值赋值给主键. 如今发现oracle有sequence就不用那么麻烦了. 转自:http: ...
- android app 架构设计01
1:本文有摘抄, 1 2 3 4 5 - 开发过程中.需求.设计.编码的一致性 - 整个程序具有统一的风格,比方对话框样式,button风格,色调等UI元素 - 整个程序详细统一的结构,比方不同模块訪 ...
- php建立简单的用户留言系统
php建立简单的用户留言系统 样例 addMsg.php--添加留言页面 doAction.php--响应添加留言页面 . viewMsg.php--显示留言页面 目录结构 addMsg.php--添 ...
- org.springframework.beans.factory.config.PropertyPlaceholderConfigurer的systemPropertiesModeName属性
转自:https://www.cnblogs.com/huqianliang/p/5673701.html 使用PropertyPlaceholderConfigurer类载入外部配置 在Spring ...
- MyEclipse设置默认注释的格式
首先选菜单windows-->preferenceJava-->Code Style-->Code Templates code-->new Java files 然后选中点编 ...