Description

求有多少种长度为 n 的序列 A,满足以下条件:
1 ~ n 这 n 个数在序列中各出现了一次
若第 i 个数 A[i] 的值为 i,则称 i 是稳定的。序列恰好有 m 个数是稳定的
满足条件的序列可能很多,序列数对 10^9+7 取模。

Input

第一行一个数 T,表示有 T 组数据。
接下来 T 行,每行两个整数 n、m。
T=500000,n≤1000000,m≤1000000
 

Output

输出 T 行,每行一个数,表示求出的序列数

 

Sample Input

5
1 0
1 1
5 2
100 50
10000 5000

Sample Output

0
1
20
578028887
60695423
/*
很容易就推出公式:ans=C(n,m)*dp[n-m]
dp[i]表示i的全错排方案数,dp[i]=(i-1)*(dp[i-1]+dp[i-2])
预处理出阶乘,阶乘的逆元和dp数组。
*/
#include<cstdio>
#include<iostream>
#define N 1000010
#define lon long long
#define mod 1000000007
#ifdef unix
#define LL "%lld"
#else
#define LL "%I64d"
#endif
using namespace std;
lon dp[N],inv[N],jc1[N],jc2[N],n,m;
void init(){
dp[]=;dp[]=;dp[]=;
for(int i=;i<N;i++)
dp[i]=(i-)*(dp[i-]+dp[i-])%mod;
inv[]=;
for(int i=;i<N;i++)
inv[i]=(mod-mod/i)*inv[mod%i]%mod;
jc1[]=;
for(int i=;i<N;i++)
jc1[i]=jc1[i-]*i%mod;
jc2[]=;
for(int i=;i<N;i++)
jc2[i]=jc2[i-]*inv[i]%mod;
}
int main(){
init();
int T;scanf("%d",&T);
while(T--){
scanf(LL LL,&n,&m);
lon ans=jc1[n]*jc2[m]%mod*jc2[n-m]%mod*dp[n-m]%mod;
printf(LL,ans);printf("\n");
}
return ;
}

排列计数(bzoj 4517)的更多相关文章

  1. BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 911  Solved: 566[Submit][Status ...

  2. 数学(错排):BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 693  Solved: 434[Submit][Status ...

  3. BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]

    4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...

  4. BZOJ 4517: [Sdoi2016]排列计数 错排公式

    4517: [Sdoi2016]排列计数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4517 Description 求有多少种长度为 ...

  5. BZOJ 4517: [Sdoi2016]排列计数 错排+逆元

    4517: [Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i, ...

  6. Bzoj 4517: [Sdoi2016]排列计数(排列组合)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MB Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ...

  7. bzoj-4517 4517: [Sdoi2016]排列计数(组合数学)

    题目链接: 4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 846  Solved: 530[Submit][ ...

  8. BZOJ 4517--[Sdoi2016]排列计数(乘法逆元)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1727  Solved: 1067 Description ...

  9. bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)

    bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: ...

  10. BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]

    2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1936  Solved: 477[Submit][ ...

随机推荐

  1. python - 辨识alert、window以及操作

    selenium之 辨识alert.window以及操作 原创 2016年08月24日 11:01:04 4820 0 2 更多关于python selenium的文章,请关注我的专栏:Python ...

  2. javascript自定义一个迭代器

    js中对象分为可迭代和不可迭代 如果是可迭代哪它就会有一个[Symbol.iterator] 函数 这个函数就是对象的迭代器函数,如用for of 如果遍历的对象没有这个迭代方法那么就会报错 for ...

  3. 【上下界网络流 二分】bzoj2406: 矩阵

    感觉考试碰到上下界网络流也还是写不来啊 Description Input 第一行两个数n.m,表示矩阵的大小. 接下来n行,每行m列,描述矩阵A. 最后一行两个数L,R. Output 第一行,输出 ...

  4. 【二分 最小割】cf808F. Card Game

    Digital collectible card games have become very popular recently. So Vova decided to try one of thes ...

  5. sphinx增量索引使用

    sphinx在使用过程中如果表的数据量很大,新增加的内容在sphinx索引没有重建之前都是搜索不到的. 这时可以通过建立sphinx增量索引,通过定时更新增量索引,合并主索引的方式,来实现伪实时更新. ...

  6. 笔记--Day1--python基础1

    一.目录 1.Python介绍 python的创始人为吉多·范罗苏姆(Guido van Rossum),目前已经是使用频度特别高的开发语言. 主要应用领域: 云计算:云计算最火的语言,典型应用有Op ...

  7. Ubuntu 18.04安装显卡驱动

    安装完双系统,我遇到好几次开机或关机有问题,导致我重装了3次系统,第三次我才知道是显卡驱动问题,Ubuntu预装的开源Nvidia驱动太烂了,需要换官方驱动. 把 nouveau 驱动加入黑名单 $s ...

  8. leetcode-19-merge

    88. Merge Sorted Array 解题思路: 需要注意,两个数组是排好序的,且nums1够大.所以从两个数组的尾端开始比较,大的那个放在nums1的尾部,并且放了之后就可以前进. 例如nu ...

  9. 使用fio测试磁盘I/O性能

    简介: fio是测试IOPS的非常好的工具,用来对硬件进行压力测试和验证,支持13种不同的I/O引擎,包括:sync,mmap, libaio, posixaio, SG v3, splice, nu ...

  10. Python属性描述符(一)

    描述符是对多个属性运用相同存取逻辑的一种方式,,是实现了特性协议的类,这个协议包括了__get__.__set__和__delete__方法.property类实现了完整的描述符协议.通常,可以只实现 ...