[洛谷3935]Calculating
题目链接:https://www.luogu.org/problemnew/show/P3935
首先显然有\(\sum\limits_{i=l}^rf(i)=\sum\limits_{i=1}^rf(i)-\sum\limits_{i=1}^{l-1}f(i)\),于是问题转化为了如何求\(\sum\limits_{i=1}^nf(i)\),即\(\sum\limits_{i=1}^n\sum\limits_{d|i}1\),调整枚举顺序有\(\sum\limits_{d=1}^n\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}1\),即\(\sum\limits_{d=1}^n\lfloor\dfrac{n}{d}\rfloor\),由于\(n\)很大,所以我们使用整除分块即可
/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int frd(){
int x=0,f=1; char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline int read(){
int x=0,f=1; char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
const int p=998244353;
int solve(ll n){
int res=0;
for (ll i=1,pos;i<=n;i=pos+1){
pos=n/(n/i); int len=(pos-i+1)%p;
res=(res+1ll*len*(n/i)%p)%p;
}
return res;
}
int main(){
ll l,r;
scanf("%lld%lld",&l,&r);
printf("%d\n",(solve(r)-solve(l-1)+p)%p);
return 0;
}
[洛谷3935]Calculating的更多相关文章
- 洛谷P3935 Calculating(整除分块)
题目链接:洛谷 题目大意:定义 $f(x)=\prod^n_{i=1}(k_i+1)$,其中 $x$ 分解质因数结果为 $x=\prod^n_{i=1}{p_i}^{k_i}$.求 $\sum^r_{ ...
- 洛谷P3935 Calculating (莫比乌斯反演)
P3935 Calculating 题目描述 若xx分解质因数结果为\(x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n},令f(x)=(k_1+1)(k_2+1)\cdots ...
- [洛谷P3935]Calculating
题目大意:设把$x$分解质因数的结果为$x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n}$,令$f(x)=(k_1+1)(k_2+1)\cdots (k_n+1)$,求$\su ...
- 洛谷 - P3935 - Calculating - 整除分块
https://www.luogu.org/fe/problem/P3935 求: \(F(n)=\sum\limits_{i=1}^{n}d(i)\) 枚举因子\(d\),每个因子\(d\)都给其倍 ...
- 洛谷 P3935 Calculating
虽然对这道题没有什么帮助,但是还是记一下:约数个数也是可以线性筛的 http://www.cnblogs.com/xzz_233/p/8365414.html 测正确性题目:https://www.l ...
- 洛谷 P3935 Calculating 题解
原题链接 一看我感觉是个什么很难的式子-- 结果读完了才发现本质太简单. 算法一 完全按照那个题目所说的,真的把质因数分解的结果保留. 最后乘. 时间复杂度:\(O(r \sqrt{r})\). 实际 ...
- 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...
- 洛谷1640 bzoj1854游戏 匈牙利就是又短又快
bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...
- 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.
没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...
随机推荐
- BZOJ 2002 Bounce 弹飞绵羊 —— 分块算法
题目链接:https://vjudge.net/problem/HYSBZ-2002 2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 10 Sec Memory Li ...
- MYSQL进阶学习笔记十六:MySQL 监控!(视频序号:进阶_35)
知识点十七:MySQL监控(35) 一.为什么使用MySQL监控 随着软件后期的不断升级,myssql的服务器数量越来越多,软硬件故障的发生概率也越来越高.这个时候就需要一套监控系统,当主机发生异常时 ...
- Linux档案属性
输入命令:ls -al 档案类型权限: 第一個字元代表这个档案是『目录.档案或链接档等等』: 当为[ d ]则是目录: 当为[ - ]则是目录: 若是[ l ]则表示为链接档(link file): ...
- Java 发送Get和Post请求
package com.htpt.superviseServices.dm.util; import java.io.BufferedReader; import java.io.IOExceptio ...
- 《UML和模式应用》读书笔记(一)
一.绪论 1. 面向对象分析和设计 1.1 什么是分析和设计 分析(analysis)强调的是对问题和需求的调查研究,而不是解决方案. 设计(design)强调的是满足需求的概念上的解决方案,而不是其 ...
- 4.13 BJ集训
T1 Mobitel 题目大意: 一个全是正整数的矩阵,求从左上角到右下角的简单路径有多少条路径上数的乘积$>=K$ 思路: 由于整数分块,我们设$f(i,j,k)$表示走到$(i,j)$,$k ...
- android开发中怎么通过Log函数输出当前行号和当前函数名
public class Debug { public static int line(Exception e) { StackTraceElement[] trace = e.getStackTra ...
- win7 第一次装 mysql-5.7.16-winx64 ,不知道root 密码,该如何处理?
转载请注明出处:http://blog.csdn.net/qq_26093511/article/details/52851811 ERROR 1045 (28000): Access denied ...
- Java--23种设计模式之decorator模式
装饰模式:装饰模式以对客户端透明的方式扩展对象的功能,是继承关系的一个替代方案,提供比继承更多的灵活性.动态给一个对象增加功能,这些功能可以再动态的撤消.增加由一些基本功能的排列组合而产生的非常大量的 ...
- Algorithms : Programming Assignment 3: Pattern Recognition
Programming Assignment 3: Pattern Recognition 1.题目重述 原题目:Programming Assignment 3: Pattern Recogniti ...