嘟嘟嘟

郑重声明:我的前几到分块题写法上都有点小毛病,以这篇为主!

这道题感觉也是分块的基本套路,只不过卡常,得开氧气。

维护俩:sum[i][j]表示前 i 块中,数字 j 出现了多少次,ans[i][j]表示块 i 到块 j 的答案。这两者都可以在O(n√n)内预处理。方法也比较套路,具体看代码。

查询的时候也很套路,多开一个num[i],表示 i 这个数在零散部分出现了多少次,那么num[i] + sum[r - 1][i] - sum[l][i]就是在[L, R]中出现了多少次。

因为卡常,所以别用memset,开一个数组记录存了那些数,然后逐个清零即可。

 #include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-;
const int maxn = 1e5 + ;
const int maxb = ;
inline ll read()
{
ll ans = ;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) {last = ch; ch = getchar();}
while(isdigit(ch)) {ans = (ans << ) + (ans << ) + ch - ''; ch = getchar();}
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < ) x = -x, putchar('-');
if(x >= ) write(x / );
putchar(x % + '');
} int n, c, m, a[maxn];
int S, Cnt = , blo[maxn], lb[maxb], rb[maxb];
int sum[maxb][maxn], ans[maxb][maxb];
int num[maxn], cnt[maxn], cn = ;
void init()
{
S = sqrt(n);
Cnt = n % S ? n / S + : n / S;
for(int i = ; i <= Cnt; ++i) lb[i] = rb[i - ] + , rb[i] = lb[i] + S - ; //这里以前的写法不对
rb[Cnt] = n;
for(int i = , j = ; i <= n; ++i) blo[i] = j, j += (i == rb[j]);
for(int i = ; i <= Cnt; ++i)
{
for(int j = ; j <= c; ++j) sum[i][j] += sum[i - ][j];
for(int j = lb[i]; j <= rb[i]; ++j) sum[i][a[j]]++;
}
for(int i = ; i <= Cnt; ++i)
{
int tot = ;
for(int j = lb[i], k = i; j <= n; ++j)
{
if(!num[a[j]]) cnt[++cn] = a[j];
if(++num[a[j]] > )
{
if(num[a[j]] & ) tot--;
else tot++;
}
if(j == rb[k]) ans[i][k++] = tot;
}
while(cn) num[cnt[cn]] = , cn--;
}
}
int query(int L, int R)
{
int l = blo[L], r = blo[R], ret = ;
if(l == r)
{
for(int i = L; i <= R; ++i)
{
if(!num[a[i]]) cnt[++cn] = a[i];
if(++num[a[i]] > )
{
if(num[a[i]] & ) ret--;
else ret++;
}
}
while(cn) num[cnt[cn]] = , cn--;
return ret;
}
ret = ans[l + ][r - ];
for(int i = L; i <= rb[l]; ++i)
{
if(!num[a[i]]) cnt[++cn] = a[i];
num[a[i]]++;
int tp = num[a[i]] + sum[r - ][a[i]] - sum[l][a[i]];
if(tp > )
{
if(tp & ) ret--;
else ret++;
}
}
for(int i = lb[r]; i <= R; ++i)
{
if(!num[a[i]]) cnt[++cn] = a[i];
num[a[i]]++;
int tp = num[a[i]] + sum[r - ][a[i]] - sum[l][a[i]];
if(tp > )
{
if(tp & ) ret--;
else ret++;
}
}
while(cn) num[cnt[cn]] = , cn--;
return ret;
} int Ans = ; int main()
{
n = read(), c = read(), m = read();
for(int i = ; i <= n; ++i) a[i] = read();
init();
for(int i = ; i <= m; ++i)
{
int L = read(), R = read();
L = (L + Ans) % n + ; R = (R + Ans) % n + ; if(L > R) swap(L, R);
Ans = query(L, R);
write(Ans), enter;
}
return ;
}

luogu P4135 作诗的更多相关文章

  1. 洛谷P4135 作诗 (分块)

    洛谷P4135 作诗 题目描述 神犇SJY虐完HEOI之后给傻×LYD出了一题: SHY是T国的公主,平时的一大爱好是作诗. 由于时间紧迫,SHY作完诗之后还要虐OI,于是SHY找来一篇长度为N的文章 ...

  2. [Luogu 4135] 作诗

    Description 神犇SJY虐完HEOI之后给傻×LYD出了一题: SHY是T国的公主,平时的一大爱好是作诗. 由于时间紧迫,SHY作完诗之后还要虐OI,于是SHY找来一篇长度为N的文章,阅读M ...

  3. P4135 作诗——分块

    题目:https://www.luogu.org/problemnew/show/P4135 分块大法: 块之间记录答案,每一块记录次数前缀和: 注意每次把桶中需要用到位置赋值就好了: 为什么加了特判 ...

  4. 洛谷P4135 作诗

    题意:[l,r]之间有多少个数出现了正偶数次.强制在线. 解:第一眼想到莫队,然后发现强制在线...分块吧. 有个很朴素的想法就是蒲公英那题的套路,做每块前缀和的桶. 然后发现这题空间128M,数组大 ...

  5. P4135 作诗

    传送门 分块 设sum[ i ] [ j ] 存从左边到第 i 块时,数字 j 的出现次数 f [ i ] [ j ] 存从第 i 块,到第 j 块的一整段的答案 那么最后答案就是一段区间中几块整段的 ...

  6. 洛谷 P4135 作诗

    分块大暴力,跟区间众数基本一样 #pragma GCC optimize(3) #include<cstdio> #include<algorithm> #include< ...

  7. 【分块】P4135 作诗

    分块太暴力惹... 没做出来.看了题解qaq 分析: 两头$\sqrt{n}$暴力维护 预处理ans[i][j],sum[i][j] sum[i][j]是一个前缀和,前i块值为j的数量 ans[i][ ...

  8. 洛谷 P4135 作诗(分块)

    题目链接 题意:\(n\) 个数,每个数都在 \([1,c]\) 中,\(m\) 次询问,每次问在 \([l,r]\) 中有多少个数出现偶数次.强制在线. \(1 \leq n,m,c \leq 10 ...

  9. 洛谷P4135 作诗(不一样的分块)

    题面 给定一个长度为 n n n 的整数序列 A A A ,序列中每个数在 [ 1 , c ] [1,c] [1,c] 范围内.有 m m m 次询问,每次询问查询一个区间 [ l , r ] [l, ...

随机推荐

  1. win10-查看wifi密码

    1:查看pc连接的wifi名称:netsh wlan show profile 2:生成xml文件:  netsh wlan export profile name= YJ-PC_Network fo ...

  2. .Net程序员玩转Android系列之二~Android Framework概要(1)

    从windows操作系统说起 人们总是喜欢从将陌生的事物和自己所了解的东西关联起来,以加深对未知事物的了解,这一讲我们从windows操作系统说起,逐步引领带大家走入android的世界.写任何程序都 ...

  3. 使用在线工具下载YouTube视频

    YouTube上面有数不尽的视频资源,很多人都想从上面下载自己喜欢的视频,但是不得其法.那么,究竟怎样从YouTube上面下载视频呢?其实,一点也不难.只要你在Google上面搜索free youtu ...

  4. 四:SpringThinking

    一:将对象配置到容器 1.xml文件:空参构造 <bean name="user" class="com.spring.bean.User" scope= ...

  5. EasyUI datebox 日期范围 日期关联

    jQuery EasyUI 1.4.5 html: <label>提交日期:</label> <input id="startDate" name=& ...

  6. UVA 10328(DP,大数,至少连续)

    http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=19825 这道题和http://www.cnblogs.com/qlky/p/ ...

  7. python打开文件常见错误及解决办法

    打开文件注意事项: 打开文件时需要,填写正确的路径,需要配置与文件相同的编码方式打开位机例如’utf-8‘,需要以特定 的模式打开文件 r, w,r+,w+,rb,wb,a, a+,ab等模式 f.o ...

  8. <head>标签和它的小伙伴们

    head标签是HTML文档中最基本的必须元素之一(body:对,还有我): <html> <head> <title>文档的标题</title> < ...

  9. 解决 spring cloud 项目的 com.netflix.hystrix.contrib.javanica.aop.aspectj.HystrixCommandAspect 错误信息

    在项目中引入:引入hystrix依赖,如下 <dependency> <groupId>org.springframework.cloud</groupId> &l ...

  10. css层叠性和继承性

    1.了解css层叠性 层叠性是什么?就是解决处理css选择器和属性冲突的能力.css的选择器权重是分大小,就是当多个选择器都选中了同一个标签时,听谁的??? 标签选择器 < 类选择器 < ...