题意

题目链接

给出两个长度为\(n\)的数组\(a, b\)

每次可以将\(a\)中的某个数替换为所有数\(xor\)之和。

若\(a\)数组可以转换为\(b\)数组,输出最少操作次数

否则输出\(-1\)

Sol

一般那看到这种\(N \leqslant 10^5\)而且不可做的题肯定是先找结论啦

不难看出,我们把所有数\(xor\)起来的数替换掉之后再次\(xor\),得到的一定是被替换掉的数。

实际上,我们可以把xor出来的数放到一个新的位置\(N+1\),这样每次操作就变成了交换第\(N+1\)个位置的数和任意一个位置\(x\)的数

总的问题就变成了

给出两个长度为\(N+1\)的数组\(a, b\),每次可以在\(a\)中交换\(\forall i \in [1, n]\)位置和\(N+1\)位置的数,问最少交换几次变为\(b\)数组

首先把\(-1\)的情况判掉,很显然,把两个数组排序后,若存在一个位置不相同,则一定无解

否则一定有解。

到这里我就不会了。。。。

官方题解非常神仙。

对于\(i\)位置,若\(a_i \not = b_i\),则向\(a_i\)到\(b_i\)连一条边

最终答案 = 总边数 + 联通块数 - 1

想一想为什么,对于联通块内的点,假设其大小为\(x\),我们一定可以通过\(x-1\)次操作把他们对应的\(a\)和\(b\)变的相同

对于不同联通块之间,我们还需要一步操作使得第\(N+1\)个位置的数在两个联通块之间转化(第一个除外)

对于第\(N+1\)个位置需要单独考虑:如果它已经在联通块里则不需要考虑,否则把它看做单独联通块

否则

2
1 3
3 1

可以用并查集维护联通块个数

#include<bits/stdc++.h>
const int MAXN = 4e5 + 10;
using namespace std;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N;
int a[MAXN], b[MAXN], ta[MAXN], tb[MAXN], sa, sb, tot = 0, date[MAXN], fa[MAXN];
map<int, bool> ti;
int find(int x) {
return fa[x] == x ? fa[x] : fa[x] = find(fa[x]);
}
int unionn(int x, int y) {
fa[x] = y;
}
int main() {
N = read();
for(int i = 1; i <= N; i++) a[i] = read(), sa ^= a[i]; a[N + 1] = sa;
for(int i = 1; i <= N; i++) b[i] = read(), sb ^= b[i]; b[N + 1] = sb;
N++;
memcpy(ta, a, sizeof(a)); memcpy(tb, b, sizeof(b));
sort(ta + 1, ta + N + 1); sort(tb + 1, tb + N + 1);
for(int i = 1; i <= N - 1; i++) if(ta[i] != tb[i]) return puts("-1"), 0; int ans = 0, num = 0;
for(int i = 1; i <= N; i++)
if(a[i] != b[i] || (i == N)) {
date[++num] = a[i]; date[++num] = b[i];
if(i < N)ans++;//最后一块单独考虑
}
if(ans == 0) return puts("0"), 0; sort(date + 1, date + num + 1);
num = unique(date + 1, date + num + 1) - date - 1;
for(int i = 1; i <= num; i++) fa[i] = i;
for(int i = 1; i <= N; i++)
if(a[i] != b[i]) {
a[i] = lower_bound(date + 1, date + num + 1, a[i]) - date,
b[i] = lower_bound(date + 1, date + num + 1, b[i]) - date;
if(!ti[a[i]]) ti[a[i]] = 1;
if(!ti[b[i]]) ti[b[i]] = 1;
unionn(find(a[i]), find(b[i]));
} for(int i = 1; i <= num; i++)
if(fa[i] == i) ans++;
printf("%d", ans - 1); return 0;
}

agc016D - XOR Replace(图论 智商)的更多相关文章

  1. AGC016D - XOR Replace 置换/轮换

    目录 题目链接 题解 代码 题目链接 AGC016D - XOR Replace 题解 可以发现一次操作相当于一次置换 对于每个a上的位置映射到b对应 可以找到置换群中的 所有轮换 一个k个元素的轮换 ...

  2. 【做题】agc016d - XOR Replace——序列置换&环

    原文链接 https://www.cnblogs.com/cly-none/p/9813163.html 题意:给出初始序列\(a\)和目标序列\(b\),都有\(n\)个元素.每次操作可以把\(a\ ...

  3. [agc016d]xor replace

    题意: 题解: 棒棒的神仙题...这题只是D题???(myh:看题五分钟,讨论两小时) 首先这个异或和是假的,比如我现在有$a=(a_1,a_2,a_3,a_4)$,操作一下$a_2$,就变成了$a= ...

  4. AGC 16 D - XOR Replace

    AGC 16 D - XOR Replace 附上attack(自为风月马前卒爷) 的题解 Problem Statement There is a sequence of length N: a=( ...

  5. 【agc016D】XOR Replace

    Portal --> agc016D Description ​ 一个序列,一次操作将某个位置变成整个序列的异或和,现在给定一个目标序列,问最少几步可以得到目标序列 ​ Solution ​ 翀 ...

  6. AtcoderGrandContest 016 D.XOR Replace

    $ >AtcoderGrandContest \space 016 D.XOR\space Replace<$ 题目大意 : 有两个长度为 \(n\) 的数组 \(A, B\) ,每次操作 ...

  7. TTTTTTTTTTTTTTTTTTT CF 银行转账 图论 智商题

    C. Money Transfers time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  8. Agc016_D XOR Replace

    传送门 题目大意 给定两个长为$n$的序列$A,B$你可以进行若干组操作,每次操作选定一各位置$x$,令$A_x$等于$A$的异或和. 问能否通过一定操作使得$A$成为$B$,如果能,求最小操作书数. ...

  9. Atcoder D - XOR Replace(思维)

    题目链接:http://agc016.contest.atcoder.jp/tasks/agc016_d 题解:稍微想一下就知道除了第一次的x是所有的异或值,之后的x都是原先被替换掉的a[i]所以要想 ...

随机推荐

  1. [zhuan]VMware中bridge方式网络不能上网的解决办法

    http://jingpin.jikexueyuan.com/article/31601.html 安装好VMware 7后,打开原来的虚拟机文件,发现不能上网,原来的Ethernet是设置的Brid ...

  2. Bazinga 字符串HASH 这题不能裸HASH 要优化 毒瘤题

    Ladies and gentlemen, please sit up straight. Don't tilt your head. I'm serious. For nn given string ...

  3. java重写equals和hashCode方法

    一.重写equals方法 如果不重写equals,那么比较的将是对象的引用是否指向同一块内存地址,重写之后目的是为了比较两个对象的value值是否相等. 利用equals比较八大包装对象(如int,f ...

  4. 题解【poj2774 Long Long Message】

    Description 求两个串的最长连续公共字串 Solution 后缀数组入门题吧 把两个串连在一起,中间加一个分隔符,然后跑一遍后缀数组,得到 height 和 sa 一个 height[i] ...

  5. HDU1832 二维线段树求最值(模板)

    Luck and Love Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...

  6. 【Android】完善Android学习(二:API 2.3.4)

    备注:之前Android入门学习的书籍使用的是杨丰盛的<Android应用开发揭秘>,这本书是基于Android 2.2API的,目前Android已经到4.4了,更新了很多的API,也增 ...

  7. C11简洁之道:模板改进

    1.  右尖括号 我们在C++98/03中使用泛型编程的时候,经常遇到“>>”被当作右移操作符,而不是模板参数的结尾.假如我们有如下代码: template <typename T& ...

  8. Linux下Tomcat重启脚本

    我们重启Tomcat服务的时候,Tomcat自带的shutdown.sh脚本有时并不能真正杀死进程,经常需要我们用“kill -9 pid”的方式来杀死进程. 下面的脚本可以简化我们的操作,执行可杀死 ...

  9. 【洛谷 P3899】 [湖南集训]谈笑风生 (主席树)

    题目链接 容易发现\(a,b,c\)肯定是在一条直链上的. 定义\(size(u)\)表示以\(u\)为根的子树大小(不包括\(u\)) 分两种情况, 1.\(b\)是\(a\)的祖先,对答案的贡献是 ...

  10. centos7.2进入单用户模式修改密码

    1 - 在启动grub菜单,选择编辑选项启动 2 - 按键盘e键,来进入编辑界面 3 - 找到Linux 16的那一行,将ro改为rw init=/sysroot/bin/sh 4 - 现在按下 Co ...