Taylor series
w用有限来表达无限,由已知到未知,化未知为已知。
https://en.wikipedia.org/wiki/Taylor_series
The Greek philosopher Zeno considered the problem of summing an infinite series to achieve a finite result, but rejected it as an impossibility: the result was Zeno's paradox. Later, Aristotle proposed a philosophical resolution of the paradox, but the mathematical content was apparently unresolved until taken up by Archimedes, as it had been prior to Aristotle by the Presocratic Atomist Democritus. It was through Archimedes's method of exhaustion that an infinite number of progressive subdivisions could be performed to achieve a finite result.[1] Liu Hui independently employed a similar method a few centuries later.[2]
In the 14th century, the earliest examples of the use of Taylor series and closely related methods were given by Madhava of Sangamagrama.[3][4] Though no record of his work survives, writings of later Indian mathematicians suggest that he found a number of special cases of the Taylor series, including those for the trigonometric functions of sine, cosine, tangent, and arctangent. The Kerala school of astronomy and mathematics further expanded his works with various series expansions and rational approximations until the 16th century.
In the 17th century, James Gregory also worked in this area and published several Maclaurin series. It was not until 1715 however that a general method for constructing these series for all functions for which they exist was finally provided by Brook Taylor,[5] after whom the series are now named.
The Maclaurin series was named after Colin Maclaurin, a professor in Edinburgh, who published the special case of the Taylor result in the 18th century.
https://zh.wikipedia.org/wiki/刘徽
刘徽(约225年-约295年[1]),三国时代魏国数学家。白尚恕考证他是山东淄博淄川人,梁敬王刘定国之孙菑乡侯刘逢喜的后裔[2]。
刘徽为《九章算术》做注,于三国魏景元四年(公元263年)成书,[3]其中他提出用割圆术计算圆周率的方法,计算出正192边形的面积,得到圆周率的近似值为 {\displaystyle {\tfrac {157}{50}}} (即 3.14),在此基础上又计算出正3072边形的面积,得到圆周率的近似值为 {\displaystyle {\tfrac {3927}{1250}}}
(即 3.1416)。作此书注时,他还依据其“割补术”为证勾股定理,另辟蹊径作青朱出入图。图虽失传,但据其“出入相补、以盈补虚”原理,后人参照书中类似方法还原了此图。
刘徽后撰《重差》,唐初以后失传,仅《重差》一卷单行,因其第一题是测量海岛高度和距离的问题,故又名《海岛算经》。此外刘徽还著有《鲁史欹器图》,《九章重差图》,唐代失传。
刘徽的卓越成就受到后人的重视,宋徽宗时代为恢复数学教学制度,便追封了部分历代的天算家,其中便有刘徽。
Taylor series的更多相关文章
- MOOCULUS微积分-2: 数列与级数学习笔记 7. Taylor series
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 6. Power series
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- <<Numerical Analysis>>笔记
2ed, by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...
- <<Vector Calculus>>笔记
现在流行用Exterior Caculus, 所以个人觉得Matthews这本书有点过时了. 想学Vector Calculus的话,推荐<Vector Calculus, Linear Alg ...
- \(\S1 \) Gaussian Measure and Hermite Polynomials
Define on \(\mathbb{R}^d\) the normalized Gaussian measure\[ d \gamma(x)=\frac{1}{(2\pi)^{\frac{d}{2 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 Review and Final
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- 立体匹配:关于理解middlebury提供的立体匹配代码后的精减
Middlebury立体匹配源码总结 优化方法 图像可否预处理 代价计算可否采用BT方式 可选代价计算方法 可否代价聚合 可否MinFilter优化原始代价 WTA-Box 可以 可以 AD/SD 可 ...
- 一个Sqrt谋杀触发功能
我们平时常常会有一些数据运算的操作,须要调用sqrt,exp,abs等函数,那么时候你有没有想过:这个些函数系统是怎样实现的?就拿最常常使用的sqrt函数来说吧.系统怎么来实现这个常常调用的函数呢? ...
- Pi
Math]Pi 数学知识忘地太快,在博客记录一下pi的生成. 100 Decimal places 3.1415926535897932384626433832795028841971693993 ...
随机推荐
- ubuntu环境变量及其配置
Linux中环境变量包括系统级和用户级,系统级的环境变量是每个登录到系统的用户都要读取的系统变量,而用户级的环境变量则是该用户使用系统时加载的环境变量.所以管理环境变量的文件也分为系统级和用户级的. ...
- CentOS7 安装lua环境(我是在mysql读写分离用的)
下载地址:http://www.lua.org/download.html 安装方法: 依次执行以下命令: curl -R -O http://www.lua.org/ftp/lua-5.3.1.ta ...
- freeswitch录音功能
首先备份/usr/local/freeswitch/conf/dialplan/default.xml . 然后vi编辑default.xml ,在 <extension name=" ...
- iOS5 ARC,IBOutlets 应该定义strong还是weak
转自:http://blog.csdn.net/yiyaaixuexi/article/details/7864974 写这篇文章的缘由,是因为我泡在stackoverflow上翻帖子,看到一个名为S ...
- tensorflow 之模型的保存与加载(三)
前面的两篇博文 第一篇:简单的模型保存和加载,会包含所有的信息:神经网络的op,node,args等; 第二篇:选择性的进行模型参数的保存与加载. 本篇介绍,只保存和加载神经网络的计算图,即前向传播的 ...
- InnoDB:表
数据在表中是如何进行组织存放的?下面我们就来看看: InnoDB引擎表的类型 InnoDB表都会有一个主键. 如果没有显示的指定主键,首先会去查找,看是否有非空的唯一索引, 如果有,则该列为主键:如果 ...
- HDU 1978 How many ways DP问题
How many ways Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- WEB前端面试题 分别使用2个、3个、5个DIV画出一个大的红十字
<!DOCTYPE html> <!--两个DIV--> <html> <body> <div style="width:100%;he ...
- windows共享文件的方法
众所周知,一个宿舍,一个公司处在一个局域网络中,在不能使用外网通信情况下,此时,我们忘带U盘或者硬盘,同学或同事之间需要拷贝资料或者数据,是不是就不能实现了呢?答案是否定的.微软为了解决这种不必要的麻 ...
- ef6 code first with Oracle 试玩记录
对于oracle 使用code first 这边文章不错: http://www.cnblogs.com/wlflovenet/p/4187455.html 补充一下: 文章中提到machine.co ...