w用有限来表达无限,由已知到未知,化未知为已知。

https://en.wikipedia.org/wiki/Taylor_series

The Greek philosopher Zeno considered the problem of summing an infinite series to achieve a finite result, but rejected it as an impossibility: the result was Zeno's paradox. Later, Aristotle proposed a philosophical resolution of the paradox, but the mathematical content was apparently unresolved until taken up by Archimedes, as it had been prior to Aristotle by the Presocratic Atomist Democritus. It was through Archimedes's method of exhaustion that an infinite number of progressive subdivisions could be performed to achieve a finite result.[1] Liu Hui independently employed a similar method a few centuries later.[2]

In the 14th century, the earliest examples of the use of Taylor series and closely related methods were given by Madhava of Sangamagrama.[3][4] Though no record of his work survives, writings of later Indian mathematicians suggest that he found a number of special cases of the Taylor series, including those for the trigonometric functions of sinecosinetangent, and arctangent. The Kerala school of astronomy and mathematics further expanded his works with various series expansions and rational approximations until the 16th century.

In the 17th century, James Gregory also worked in this area and published several Maclaurin series. It was not until 1715 however that a general method for constructing these series for all functions for which they exist was finally provided by Brook Taylor,[5] after whom the series are now named.

The Maclaurin series was named after Colin Maclaurin, a professor in Edinburgh, who published the special case of the Taylor result in the 18th century.

https://zh.wikipedia.org/wiki/刘徽

刘徽(约225年-约295年[1]),三国时代魏国数学家。白尚恕考证他是山东淄博淄川人,梁敬王刘定国之孙菑乡侯刘逢喜的后裔[2]

刘徽为《九章算术》做注,于三国景元四年(公元263年)成书,[3]其中他提出用割圆术计算圆周率的方法,计算出正192边形的面积,得到圆周率的近似值为 {\displaystyle {\tfrac {157}{50}}} (即 3.14),在此基础上又计算出正3072边形的面积,得到圆周率的近似值为 {\displaystyle {\tfrac {3927}{1250}}} (即 3.1416)。作此书注时,他还依据其“割补术”为证勾股定理,另辟蹊径作青朱出入图。图虽失传,但据其“出入相补、以盈补虚”原理,后人参照书中类似方法还原了此图。

刘徽后撰《重差》,初以后失传,仅《重差》一卷单行,因其第一题是测量海岛高度和距离的问题,故又名《海岛算经》。此外刘徽还著有《鲁史欹器图》,《九章重差图》,唐代失传。

刘徽的卓越成就受到后人的重视,宋徽宗时代为恢复数学教学制度,便追封了部分历代的天算家,其中便有刘徽。

Taylor series的更多相关文章

  1. MOOCULUS微积分-2: 数列与级数学习笔记 7. Taylor series

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  2. MOOCULUS微积分-2: 数列与级数学习笔记 6. Power series

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  3. <<Numerical Analysis>>笔记

    2ed,  by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...

  4. <<Vector Calculus>>笔记

    现在流行用Exterior Caculus, 所以个人觉得Matthews这本书有点过时了. 想学Vector Calculus的话,推荐<Vector Calculus, Linear Alg ...

  5. \(\S1 \) Gaussian Measure and Hermite Polynomials

    Define on \(\mathbb{R}^d\) the normalized Gaussian measure\[ d \gamma(x)=\frac{1}{(2\pi)^{\frac{d}{2 ...

  6. MOOCULUS微积分-2: 数列与级数学习笔记 Review and Final

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  7. 立体匹配:关于理解middlebury提供的立体匹配代码后的精减

    Middlebury立体匹配源码总结 优化方法 图像可否预处理 代价计算可否采用BT方式 可选代价计算方法 可否代价聚合 可否MinFilter优化原始代价 WTA-Box 可以 可以 AD/SD 可 ...

  8. 一个Sqrt谋杀触发功能

    我们平时常常会有一些数据运算的操作,须要调用sqrt,exp,abs等函数,那么时候你有没有想过:这个些函数系统是怎样实现的?就拿最常常使用的sqrt函数来说吧.系统怎么来实现这个常常调用的函数呢? ...

  9. Pi

    Math]Pi   数学知识忘地太快,在博客记录一下pi的生成. 100 Decimal places 3.1415926535897932384626433832795028841971693993 ...

随机推荐

  1. SSM整合开发流程

    我的spring是3.2,mybatis是3.4 1 引入user libarary,我的jar文件如下 //spring mvc core springMVC\spring-web-.RELEASE ...

  2. Laravel建站03--建立前台文章列表和文章详情

    经过了前面的开发环境搭建和数据库配置.git配置的准备工作以后,现在可以开始动作做点什么了. 先从简单的开始,那就先来个文章列表和详情页吧. 这期间可以学习到路由.建立model.controller ...

  3. 关于UI功能解锁,UI特效动画,UI tips的再思考

    之前写过一篇这样的文章,但当时的思路可行性太低 首先所有的UI面板通过发送字符串消息来告知,是否触发了解锁检测,tips检测,动画特效.可以理解为这样的接口: AsyncResult SendUIMe ...

  4. Unity3D刚体不同力的测试(ForceMode,AddForce,RelativeAddForce)

    摘自圣典的一段翻译: ForceAdd a continuous force to the rigidbody, using its mass.添加一个可持续力到刚体,使用它的质量.Accelerat ...

  5. makefile之伪目标

    伪目标 1. 伪目标的语法: 在书写伪目标时,首先需要声明伪目标,然后再定义伪目标规则. 1.1 声明伪目标: .PHONY clean (这里声明clean是伪目标) 1.2 定义伪目标规则: cl ...

  6. tensorboard 之 TF可视化

    tensorboard是TF提供的一个可视化的工具 1.tensorboard可视化的数据来源? 将tensorflow程序运行过程中输出的日志文件进行可视化展示. 1.1 tensorflow怎样输 ...

  7. url中的查询字符串的参数解析

    <script> // 查询字符串函数location.search;"?q=javascript" function getQueryStringArgs(){ // ...

  8. Android Screen Monitor

    实现屏幕同步前提是安装有JDK和配置好ADB的环境变量 1.官方地址 http://code.google.com/p/android-screen-monitor/ 2.解压缩得到asm.jar 3 ...

  9. Java 编程

    1,Java实体如果复写构造方法,一定要显式指定默认构造方法 2,集合初始化下面这种方法不可取 因为双括号初始化(DBI)创建了一个匿名类,该类引用了拥有对象的实例,如果匿名内部类被其他对象返回并持有 ...

  10. 总结几个关于 jQuery 用法

    有关 jquery 用法 目录: $.trim() $.inArray() $.getJSON() 事件委托 on 遍历closest() ajaxSubmit() 拖拽排序 dragsort() 进 ...