BZOJ1041 [HAOI2008]圆上的整点 【数学】
1041: [HAOI2008]圆上的整点
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 4631 Solved: 2087
[Submit][Status][Discuss]
Description
求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数。
Input
只有一个正整数n,n<=2000 000 000
Output
整点个数
Sample Input
Sample Output
最容易想到的就是直接枚举O(n ^2)
思考如何简化:尽量减少不必要的枚举
我们观察y = sqrt(r^2 - x^2) = sqrt((r + x) * (r - x))
我们令d = gcd(r + x,r - x),则(r + x) * (r - x) = d^2 * ((r + x)/d) * ((r - x)/d)
又因为y = sqrt((r + x) * (r - x)),所以其必定为完全平方数,又因为(r + x)/d与(r - x)/d互质,所以它们也是完全平方数
我们令d * u^2 = r - x,d * v^2 = r + x
两式联立得:2r/d = u^2 + v^2,x = (v^2 - u^2) * d / 2,y = d*u*v
由此我们得出u与v的限制:①gcd(u,v)=1 ②u^2 + v^2 = 2r/d ③u <v
如果条件满足,就对应第一象限的一组解,总的解为 4 * ans + 4
时间复杂度分析:
第一层枚举O(√(2n)),第二层枚举O(√(2n/d))
而一个数的总的O(n/k)比O(n)小很多很多,完全可以接受
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define LL long long int
#define eps 1e-9
#define REP(i,n) for (int i = 1; i <= (n); i++)
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
LL n,ans = 0;
inline int gcd(int a,int b){return !b ? a : gcd(b,a % b);}
void check(LL d){
LL R = 2 * n / d,E = (LL)sqrt(R),v;
for (int i = 1; i < E; i++){
v = (LL)sqrt(R - i * i);
if (gcd(i,v) == 1 && i <= v &&i * i + v * v == R) ans++;
}
}
int main()
{
cin >> n;
LL E = (LL)sqrt(2.0 * n);
for (int i = 1; i <= E; i++){
if (2 * n % i) continue;
if (i * i == 2 * n) check(i);
else check(i),check(2 * n / i);
}
cout<<4 * ans + 4<<endl;
return 0;
}
BZOJ1041 [HAOI2008]圆上的整点 【数学】的更多相关文章
- [BZOJ1041] [HAOI2008] 圆上的整点 (数学)
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...
- bzoj 1041: [HAOI2008]圆上的整点 数学
1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点
http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 ...
- B1041 [HAOI2008]圆上的整点 数学
这个题一开始看着没什么思路,但是一看题解就明白了不少,主要是数学证明,代码很好写. 贴个网址: hzwer 题干: 题目描述 求一个给定的圆(x^+y^=r^),在圆周上有多少个点的坐标是整数. 输入 ...
- BZOJ1041:[HAOI2008]圆上的整点(数论)
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...
- BZOJ1041 HAOI2008圆上的整点(数论)
求x2+y2=r2的整数解个数,显然要化化式子.考虑求正整数解. y2=r2-x2→y2=(r-x)(r+x)→(r-x)(r+x)为完全平方数→(r-x)(r+x)/d2为完全平方数,d=gcd(r ...
- [bzoj1041][HAOI2008]圆上的整点
我能想得出怎么做才奇怪好吗 题解:http://blog.csdn.net/csyzcyj/article/details/10044629 #include<iostream> #inc ...
- 【BZOJ1041】[HAOI2008]圆上的整点
[BZOJ1041][HAOI2008]圆上的整点 题面 bzoj 洛谷 题解 不妨设\(x>0,y>0\) \[ x^2+y^2=r^2\\ y^2=(x+r)(x-r) \] 设\(r ...
- BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4210 Solved: 1908[Submit][Sta ...
随机推荐
- 如何利用Navicat导入/导出mssql中的数据
sqlserver,在第一次使用该软件进行"连接"的时候,会提示安装"Microsoft Sqlsever Navicat Client.",这时直接点击&qu ...
- Jmeter使用之:高效组织接口自动化用例技巧
Jmeter怎么使用的文章多如牛毛,但怎么组织好测试用例,则几乎很难看到.在本文,我将把Jmeter下怎么组织测试用例的几点心得分享给大家,希望能给你一些帮助或启示. 1.善用“逻辑控制器”中的“简单 ...
- labview--http协议数据交互
最近接了一个项目,需求是要将采集到的数据,以以下要求上报,并且提供接口供上层系统下发指令. 采用restful的http协议进行交互: 输入输出参数皆为json体. 响应包含三部分: Code:业务码 ...
- Http的请求和响应
请求有客户端发起:可分为4个部分,请求方法(Requestmethod).请求的网址(Request URL).请求头(Request Headers).请求体(Request Body) 1.请求方 ...
- lintcode 二叉树后序遍历
/** * Definition of TreeNode: * class TreeNode { * public: * int val; * TreeNode *left, *right; * Tr ...
- Skype for Business Server 方案
方案说明: 高可用性的配置屏蔽了单点故障,使得当一个服务器节点失效时,另外的可用的节点能够进行服务的接管.可伸缩性的配置可以保证当即时沟通平台的使用用户增加时,该平台应该具有良好的可伸缩性,能非常方便 ...
- ServiceStack.Ormlit 使用Insert的时候自增列不会被赋值
Insert签名是这样的,将第2个参数设置为true就会返回刚插入的自增列ID了,然后可以手工赋值到对象上面去 public static long Insert<T>(this IDbC ...
- 【树莓派 Raspberry-Pi 】系统安装及一些必要的配置
上周六刚收到我的小电脑,被无线设置卡住了,文章并非原创,参考了几个朋友的折腾经历,自己整理下备忘,也希望能帮到和我一样在树莓派方面小白的人,也希望可以和更多有这方面兴趣的朋友共同交流 0. 操作系统下 ...
- Python—集合(在我的世界,你就是唯一)
一.概念与定义 集合类型与数学中集合的概念一致,即包含0个或多个数据项的无序组合. 元素不可重复,只能是固定数据类型元素. 集合(set)属于Python无序可变序列,使用一对大括号作为定界符,元素之 ...
- Catch That Cow(BFS广搜)
Description Farmer John has been informed of the location of a fugitive cow and wants to catch her i ...