C. Enlarge GCD

题目链接:https://codeforces.com/contest/1047/problem/C

题意:

给出n个数,然后你可以移除一些数。现在要求你移除最少的数,让剩下数的gcd变大。

题解:

首先可以先让所有数都除以他们的gcd,让他们互质,好让问题简单化。

由唯一分解定理,题目中的问题可以转化为:找出最多数都共有的质因子,假设其数目为mx,答案就是n-mx。

上面的想法也是基于贪心,具体做法还是有点技巧,就是在筛素数的时候就进行判断,具体见代码吧:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 3e5+,M = 2e7+;
int n;
int a[N];
int cnt[M],vis[M];
int main(){
scanf("%d",&n);
int d=;
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
d=__gcd(d,a[i]);
}
for(int i=;i<=n;i++) cnt[a[i]/d]++;
int mx=;
for(int i=;i<=2e7;i++){
int tot=;
if(!vis[i]){
vis[i]=;
for(int j=i;j<=2e7;j+=i){
vis[j]=;
tot+=cnt[j];
}
}
mx=max(mx,tot);
}
int ans=n-mx;
if(ans==n) ans=-;
cout<<ans;
return ;
}

Codeforces Round #511 (Div. 2):C. Enlarge GCD(数学)的更多相关文章

  1. Codeforces Round #511 (Div. 2)-C - Enlarge GCD (素数筛)

    传送门:http://codeforces.com/contest/1047/problem/C 题意: 给定n个数,问最少要去掉几个数,使得剩下的数gcd 大于原来n个数的gcd值. 思路: 自己一 ...

  2. Codeforces Round #511 (Div. 2) C. Enlarge GCD (质因数)

    题目 题意: 给你n个数a[1]...a[n],可以得到这n个数的最大公约数, 现在要求你在n个数中 尽量少删除数,使得被删之后的数组a的最大公约数比原来的大. 如果要删的数小于n,就输出要删的数的个 ...

  3. Codeforces Round #511 (Div. 2) C. Enlarge GCD

    题目链接 题目就是找每个数的最小素因子,然后递归除,本来没啥问题,结果今天又学习了个新坑点. 我交了题后,疯狂CE,我以为爆内存,结果是,我对全局数组赋值, 如果直接赋值,会直接在exe内产生内存,否 ...

  4. Codeforces Round #323 (Div. 2) C 无敌gcd 数学/贪心

    C. GCD Table time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  5. Codeforces Round #691 (Div. 2) C. Row GCD (数学)

    题意:给你两个数组\(a\)和\(b\),对于\(j=1,...,m\),找出\(a_1+b_j,...,a_n+b_j\)的\(gcd\). 题解:我们很容易的得出\(gcd\)的一个性质:\(gc ...

  6. Codeforces Round #511 (Div. 2)

    Codeforces Round #511 (Div. 2) #include <bits/stdc++.h> using namespace std; int n; int main() ...

  7. 2018.9.21 Codeforces Round #511(Div.2)

    只写了AB,甚至还WA了一次A题,暴露了蒟蒻的本质=.= 感觉考的时候有好多正确或和正解有关的思路,但是就想不出具体的解法或者想的不够深(长)(怕不是过于鶸) 话说CF的E题怎么都这么清奇=.= A. ...

  8. C. Enlarge GCD Codeforces Round #511 (Div. 2)【数学】

    题目: Mr. F has nn positive integers, a1,a2,…,an. He thinks the greatest common divisor of these integ ...

  9. Codeforces Round #554 (Div. 2)-C(gcd应用)

    题目链接:https://codeforces.com/contest/1152/problem/C 题意:给定a,b(<1e9).求使得lcm(a+k,b+k)最小的k,若有多个k,求最小的k ...

随机推荐

  1. python函数参数默认值及重要警告

    最有用的形式是对一个或多个参数指定一个默认值.这样创建的函数,可以用比定义时允许的更少的参数调用,比如: def ask_ok(prompt, retries=4, reminder='Please ...

  2. JS的六大对象:Global、Math、Number、Date、JSON、console,运行在服务器上方的支持情况分析

    在ASP中使用runat="server"来调用JS的相关函数,代码如下: <script runat="server" language="j ...

  3. 总结获取原生JS(javascript)基本操作

    var a = document.getElementByIdx_x_x("dom"); jsCopy(a);//调用清理空格的函数 var b = a.childNodes;// ...

  4. kubernetes相关

    1.获取client , api-server 加token 或in-cluster方式 2.所有对象均有list update get 等方法 3.对象属性源码追踪,yaml与源码一一对应 4.一些 ...

  5. Case 降序升序排列

    select nc.Class_Name,hn.home_news_id,hn.hemo_id,hn.hemo_Date, hn.hemo_title,hemo_order from Hemo_New ...

  6. Ext JS 6学习文档-第3章-基础组件

    Ext JS 6学习文档-第3章-基础组件 基础组件 在本章中,你将学习到一些 Ext JS 基础组件的使用.同时我们会结合所学创建一个小项目.这一章我们将学习以下知识点: 熟悉基本的组件 – 按钮, ...

  7. php性能优化--opcache

    一.OPcache是什么? OPcache通过将 PHP 脚本预编译的字节码存储到共享内存中来提升 PHP 的性能, 存储预编译字节码的好处就是 省去了每次加载和解析 PHP 脚本的开销. PHP 5 ...

  8. ACM入门步骤(一)

    一般的入门顺序: 0. C语言的基本语法(或者直接开C++也行,当一个java选手可能会更受欢迎,并且以后工作好找,但是难度有点大),[参考书籍:刘汝佳的<算法竞赛入门经典>,C++入门可 ...

  9. Thunder团队第三周 - Scrum会议5

    Scrum会议5 小组名称:Thunder 项目名称:i阅app Scrum Master:苗威 工作照片: 参会成员: 王航:http://www.cnblogs.com/wangh013/ 李传康 ...

  10. C# Winform防止闪频和再次运行

    其实想实现只允许运行一个实例很简单,就是从program的入口函数入手.有两种情况: 第一种,用户运行第二个的时候给一个提示: using System; using System.Collectio ...