【组合&取补集】数三角形 @CQOI2014/BZOJ3505/upcexam3843
http://exam.upc.edu.cn/problem.php?id=3843&csrf=8oK86t2oHSgi3Q4SX3qOJGeENe6pfXri
时间限制: 1 Sec 内存限制: 128 MB
题目描述
给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个。下图为4x4的网格上的一个三角形。
注意:三角形的三点不能共线。n×m的网格共有(n+1)×(m+1)个格点。
输入
输入一行,包含两个空格分隔的正整数m和n(1<=m,n<=1000)。
输出
输出一个正整数,为所求三角形数量。
样例输入
2 2
样例输出
76
取补集的思想,三角形的数量等于任取三点的情况减去三点共线的情况
#define FILE() freopen("../../in.txt","r",stdin)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll combine(int n) { //n个点取3个
ll m=n,res=1;
for(int i=0; i<3; i++) {
if(m%3==0) {
res*=m/3;
} else res*=m;
m--;
}
return res/2;
}
int gcd(int a,int b){
return b?gcd(b,a%b):a;
}
int main() {
// FILE();
int n,m;
cin>>n>>m;
ll ans = combine((n+1)*(m+1))-(n+1)*combine(m+1)-(m+1)*combine(n+1); //先减去横竖格线上三点共线的
for(int i=1; i<=n; i++) {
for(int j=1; j<=m; j++) { //类似向量,从(0,0)到(i,j)作一线段 gcd(i,j)+1为线段上格点的数量
ans-=(gcd(i,j)-1)*(n-i+1)*(m-j+1)*2; //乘2是因为沿y轴翻转情况一样
}
}
cout<<ans<<endl;
return 0;
}
【组合&取补集】数三角形 @CQOI2014/BZOJ3505/upcexam3843的更多相关文章
- luogu 3166 组合与gcd(数三角形)结论
在n*m的点格图中选取三个点满足三角形的个数 结论:点(x1,y1)和(x2,y2) 中间有gcd(x2-x1,y2-y1)+1个和两点连成的线段直线共线 那么大力枚举 x2-x1和y2-y1,然后发 ...
- 洛谷P3166 数三角形 [CQOI2014] 数论
正解:数论 解题报告: 传送门! 很久以前做的题了呢,,,回想方法还想了半天QAQ 然后写这题题解主要是因为看到了好像有很新颖的法子,就想着,学习一下趴,那学都学了不写博客多可惜 首先港下最常规的方法 ...
- 【BZOJ3505】[Cqoi2014]数三角形 组合数
[BZOJ3505][Cqoi2014]数三角形 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. ...
- 【bzoj3505】[Cqoi2014]数三角形
[bzoj3505][Cqoi2014]数三角形 2014年5月15日3,5230 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4×4的网格上的一个三角 ...
- [bzoj3505][CQOI2014]数三角形_组合数学
数三角形 bzoj-3505 CQOI-2014 题目大意:给你一个n*m的网格图,问你从中选取三个点,能构成三角形的个数. 注释:$1\le n,m\le 1000$. 想法:本来是想着等中考完了之 ...
- 「BZOJ3505」[CQOI2014] 数三角形
「BZOJ3505」[CQOI2014] 数三角形 这道题直接求不好做,考虑容斥,首先选出3个点不考虑是否合法的方案数为$C_{(n+1)*(m+1)}^{3}$,然后减去三点一线的个数就好了.显然不 ...
- BZOJ 3505: [Cqoi2014]数三角形 [组合计数]
3505: [Cqoi2014]数三角形 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个. 注意三角形的三点不能共线. 1<=m,n<=1000 $n++ m++$ $ans ...
- bzoj3505 / P3166 [CQOI2014]数三角形
P3166 [CQOI2014]数三角形 前置知识:某两个点$(x_{1},,y_{1}),(x_{2},y_{2})\quad (x_{1}<x_{2},y_{1}<y_{2})$所连成 ...
- [CQOI2014]数三角形
[CQOI2014]数三角形 给定\(n\times m\)的网格,求三个点在其格点上的三角形个数,1<=m,n<=1000. 解 法一:直接 显然为组合计数问题,关键在于划分问题,注意到 ...
随机推荐
- Python_socket
TCP : 可靠传输,不安全,UDP: 安全传输,不可靠 一台机器上有2^16-1=65535个端口(1-1024)保留自己开就1024往上 socket (套接字):也可以理解为它是一个管道,用于描 ...
- mysql时间延时注入案例
通过Burpsuite结合sqlmap发现如下接口存在时间盲注
- Flink的容错
checkpoint介绍 checkpoint机制是Flink可靠性的基石,可以保证Flink集群在某个算子因为某些原因(如 异常退出)出现故障时,能够将整个应用流图的状态恢复到故障之前的某一状态,保 ...
- eclipse启动web应用 报错
错误:The origin server did not find a current representation for the target resource or is not willing ...
- CSS改变插入光标颜色caret-color
CSS代码: input { color: #333; caret-color: red; } @supports (-webkit-mask: none) and (not (caret-color ...
- dfs和bfs的区别
详见转载博客:https://www.cnblogs.com/wzl19981116/p/9397203.html 1.dfs(深度优先搜索)是两个搜索中先理解并使用的,其实就是暴力把所有的路径都搜索 ...
- snmp 里面oid对应的信息 MIB
系统参数(1.3.6.1.2.1.1) OID 描述 备注 请求方式 .1.3.6.1.2.1.1.1.0 获取系统基本信息 SysDesc GET .1.3.6.1.2.1.1.3.0 监控时间 s ...
- Django 学习第九天——请求与响应
一.HttpRequest 对象: 服务器接收到http协议的请求后,会根据报文创建 HttpRequest 对象视图函数的第一个参数是HttpRequest 对象再django.http 模块中定义 ...
- C# LnkHelper
using System; using System.Collections.Generic; using System.Text; using Microsoft.Win32; using Syst ...
- Maven使用lib下的包
Maven使用中央仓库的同时,使用lib下的包 pom.xml添加如下配置 <build> <plugins> <plugin> <artifactId> ...