http://exam.upc.edu.cn/problem.php?id=3843&csrf=8oK86t2oHSgi3Q4SX3qOJGeENe6pfXri
时间限制: 1 Sec 内存限制: 128 MB
题目描述
给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个。下图为4x4的网格上的一个三角形。
注意:三角形的三点不能共线。n×m的网格共有(n+1)×(m+1)个格点。
输入
输入一行,包含两个空格分隔的正整数m和n(1<=m,n<=1000)。
输出
输出一个正整数,为所求三角形数量。
样例输入
2 2
样例输出
76

取补集的思想,三角形的数量等于任取三点的情况减去三点共线的情况

#define FILE() freopen("../../in.txt","r",stdin)
#include <bits/stdc++.h> using namespace std; typedef long long ll; ll combine(int n) { //n个点取3个
ll m=n,res=1;
for(int i=0; i<3; i++) {
if(m%3==0) {
res*=m/3;
} else res*=m;
m--;
}
return res/2;
} int gcd(int a,int b){
return b?gcd(b,a%b):a;
} int main() {
// FILE();
int n,m;
cin>>n>>m;
ll ans = combine((n+1)*(m+1))-(n+1)*combine(m+1)-(m+1)*combine(n+1); //先减去横竖格线上三点共线的
for(int i=1; i<=n; i++) {
for(int j=1; j<=m; j++) { //类似向量,从(0,0)到(i,j)作一线段 gcd(i,j)+1为线段上格点的数量
ans-=(gcd(i,j)-1)*(n-i+1)*(m-j+1)*2; //乘2是因为沿y轴翻转情况一样
}
}
cout<<ans<<endl;
return 0;
}

【组合&取补集】数三角形 @CQOI2014/BZOJ3505/upcexam3843的更多相关文章

  1. luogu 3166 组合与gcd(数三角形)结论

    在n*m的点格图中选取三个点满足三角形的个数 结论:点(x1,y1)和(x2,y2) 中间有gcd(x2-x1,y2-y1)+1个和两点连成的线段直线共线 那么大力枚举 x2-x1和y2-y1,然后发 ...

  2. 洛谷P3166 数三角形 [CQOI2014] 数论

    正解:数论 解题报告: 传送门! 很久以前做的题了呢,,,回想方法还想了半天QAQ 然后写这题题解主要是因为看到了好像有很新颖的法子,就想着,学习一下趴,那学都学了不写博客多可惜 首先港下最常规的方法 ...

  3. 【BZOJ3505】[Cqoi2014]数三角形 组合数

    [BZOJ3505][Cqoi2014]数三角形 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. ...

  4. 【bzoj3505】[Cqoi2014]数三角形

    [bzoj3505][Cqoi2014]数三角形 2014年5月15日3,5230 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4×4的网格上的一个三角 ...

  5. [bzoj3505][CQOI2014]数三角形_组合数学

    数三角形 bzoj-3505 CQOI-2014 题目大意:给你一个n*m的网格图,问你从中选取三个点,能构成三角形的个数. 注释:$1\le n,m\le 1000$. 想法:本来是想着等中考完了之 ...

  6. 「BZOJ3505」[CQOI2014] 数三角形

    「BZOJ3505」[CQOI2014] 数三角形 这道题直接求不好做,考虑容斥,首先选出3个点不考虑是否合法的方案数为$C_{(n+1)*(m+1)}^{3}$,然后减去三点一线的个数就好了.显然不 ...

  7. BZOJ 3505: [Cqoi2014]数三角形 [组合计数]

    3505: [Cqoi2014]数三角形 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个. 注意三角形的三点不能共线. 1<=m,n<=1000 $n++ m++$ $ans ...

  8. bzoj3505 / P3166 [CQOI2014]数三角形

    P3166 [CQOI2014]数三角形 前置知识:某两个点$(x_{1},,y_{1}),(x_{2},y_{2})\quad (x_{1}<x_{2},y_{1}<y_{2})$所连成 ...

  9. [CQOI2014]数三角形

    [CQOI2014]数三角形 给定\(n\times m\)的网格,求三个点在其格点上的三角形个数,1<=m,n<=1000. 解 法一:直接 显然为组合计数问题,关键在于划分问题,注意到 ...

随机推荐

  1. Spring MVC基础知识整理➣环境搭建和Hello World

    概述 Spring MVC属于SpringFrameWork的产品,采用Model-View-Controller进行数据交互,已经融合在Spring Web Flow里面.Spring 框架提供了构 ...

  2. 解决win7 安装完jdk7后,再安装jdk8出现的问题 has value '1.8', but '1.7' is required.

    http://blog.csdn.net/qiyueqinglian/article/details/46605759 电脑装了jdk8,JAVA_HOME也是设置的8. 不删除8变回7. 改了JAV ...

  3. JMeter中BeanShell的实际应用

    使用Jmeter的BeanShell断言,把响应数据中的JSON跟数据库中的记录对比 很多时候我们需要把Response Data取到的 Json 字符串跟数据库里的对比,来验证接口的正确性,使用Be ...

  4. 给linux服务器添加一块新的磁盘

    http://www.linuxidc.com/Linux/2011-02/31868.htm 把硬盘装好后,我们用 fdisk -l 查看下: 图中可以看出 /dev/sdb 是500G,新加的硬盘 ...

  5. JAVA中值类型和引用类型的不同(面试常考)

    转载:https://www.cnblogs.com/1ming/p/5227944.html 1. JAVA中值类型和引用类型的不同? [定义] 引用类型表示你操作的数据是同一个,也就是说当你传一个 ...

  6. IDEA控制台问题:java lang OutOfMemoryError:PermGen space

    PermGen space的全称是Permanent Generation space,是指内存的永久保存区域. OutOfMemoryError: PermGen space从表面上看就是内存溢出, ...

  7. day65 request对象,以及方法,response对象,render,redirect

    这里的都是我们会频繁使用到的,用得多了自然就会了,我们写项目都是少不了这些用法的,所以这就把老师的博客粘过来就好了, Request对象 官方文档 属性 所有的属性应该被认为是只读的,除非另有说明. ...

  8. Nginx的配置安装和使用

    http://blog.csdn.net/e421083458/article/details/30086413 以后继续更新

  9. Linux系统数据共享-NFS服务

    转载:http://www.cnblogs.com/mchina/archive/2013/01/03/2840040.html 一.NFS服务简介 NFS 是Network File System的 ...

  10. POJ 1284 Primitive Roots (欧拉函数+原根)

    <题目链接> 题目大意: 满足{ ( $x^{i}$ mod p) | 1 <=$i$ <= p-1 } == { 1, …, p-1 }的x称为模p的原根.给出p,求原根个数 ...