【LOJ#6041】事情的相似度(后缀自动机)
【LOJ#6041】事情的相似度(后缀自动机)
题面
题解
\(\mbox{YCB}\)搬了这道题目。。。\(\mbox{QwQ}\)
还是用到\(lcp\)就是\(parent\)树上的\(LCA\)的\(len\)。
每次询问显然就是区间内点的贡献。
那么考虑所有可能出现的点对。
显然对于两个子串而言,只会匹配最靠近的两个。
那么用\(set\)维护\(endpos\)集合,每次合并的时候将两个最靠近的位置合并成为一个点对,其贡献就是当前点的\(len\)。
那么最终询问扫描线解决即可。
\(zsy\)还有一种用\(LCT\)的做法,大致口胡一下就是类似上面的操作,要求的就是一个链并。每次将当前点到根节点的路径染色,那么每次的交点就是一个\(LCA\)。发现染色操作类似\(LCT\)的\(access\),因此直接这么模拟即可。
代码是第一种做法的。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
using namespace std;
#define ll long long
#define MAX 100100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,m;
char ch[MAX];
struct Node{int son[26],len,ff;}t[MAX<<1];
int last,tot,sum;
set<int> S[MAX<<1];
void extend(int id,int c)
{
int p=last,np=++tot;last=np;
t[np].len=t[p].len+1;
while(p&&!t[p].son[c])t[p].son[c]=np,p=t[p].ff;
if(!p)t[np].ff=1;
else
{
int q=t[p].son[c];
if(t[q].len==t[p].len+1)t[np].ff=q;
else
{
int nq=++tot;
t[nq]=t[q];t[nq].len=t[p].len+1;
t[np].ff=t[q].ff=nq;
while(p&&t[p].son[c]==q)t[p].son[c]=nq,p=t[p].ff;
}
}
S[np].insert(id);
}
struct Point{int u,v,len;}p[MAX<<5];
bool operator<(Point a,Point b){return (a.v!=b.v)?a.v<b.v:((a.u!=b.u)?a.u<b.u:a.len<b.len);}
struct Line{int v,next;}e[MAX<<2];
int h[MAX<<1],cnt=1;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
void dfs(int u)
{
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;dfs(v);if(!t[u].len)continue;
if(S[u].size()<S[v].size())swap(S[u],S[v]);
set<int>::iterator it,nw,pre,nxt;
for(it=S[v].begin();it!=S[v].end();++it)
{
S[u].insert(*it);nw=pre=nxt=S[u].find(*it);++nxt;
if(pre!=S[u].begin())--pre,p[++sum]=(Point){*pre,*nw,t[u].len};
if(nxt!=S[u].end())p[++sum]=(Point){*nw,*nxt,t[u].len};
S[u].erase(*it);
}
for(it=S[v].begin();it!=S[v].end();++it)S[u].insert(*it);
}
}
struct Qry{int l,r,id;}q[MAX];
bool operator<(Qry a,Qry b){return (a.r!=b.r)?a.r<b.r:a.l<b.l;}
int ans[MAX];
int c[MAX];
int lb(int x){return x&(-x);}
void add(int x,int w){while(x)c[x]=max(c[x],w),x-=lb(x);}
int Query(int x){int ret=0;while(x<=n)ret=max(ret,c[x]),x+=lb(x);return ret;}
int main()
{
n=read();m=read();last=tot=1;scanf("%s",ch+1);
for(int i=1;i<=n;++i)extend(i,ch[i]-48);
for(int i=2;i<=tot;++i)Add(t[i].ff,i);
dfs(1);sort(&p[1],&p[sum+1]);
for(int i=1;i<=m;++i)q[i].l=read(),q[i].r=read(),q[i].id=i;
sort(&q[1],&q[m+1]);
for(int i=1,j=1;i<=m;++i)
{
while(j<=sum&&p[j].v<=q[i].r)add(p[j].u,p[j].len),++j;
ans[q[i].id]=Query(q[i].l);
}
for(int i=1;i<=m;++i)printf("%d\n",ans[i]);
return 0;
}
【LOJ#6041】事情的相似度(后缀自动机)的更多相关文章
- LOJ #6041. 事情的相似度
Description 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的 ...
- 【loj6041】「雅礼集训 2017 Day7」事情的相似度 后缀自动机+STL-set+启发式合并+离线+扫描线+树状数组
题目描述 给你一个长度为 $n$ 的01串,$m$ 次询问,每次询问给出 $l$ .$r$ ,求从 $[l,r]$ 中选出两个不同的前缀的最长公共后缀长度的最大值. $n,m\le 10^5$ 题解 ...
- 洛谷 P4248 / loj 2377 [AHOI2013] 差异 题解【后缀自动机】【树形DP】
可能是一个 SAM 常用技巧?感觉 SAM 的基础题好多啊.. 题目描述 给定一个长度为 \(n\) 的字符串 \(S\) ,令 \(T_i\) 表示它从第 \(i\) 个字符开始的后缀,求: \[ ...
- 洛谷 P3975 / loj 2102 [TJOI2015] 弦论 题解【后缀自动机】【拓扑排序】
后缀自动机入门. 题目描述 为了提高智商,ZJY 开始学习弦论. 这一天,她在<String theory>中看到了这样一道问题:对于一个给定的长度为 \(n\) 的字符串,求出它的第 \ ...
- LOJ6041. 「雅礼集训 2017 Day7」事情的相似度 [后缀树,LCT]
LOJ 思路 建出反串的后缀树,发现询问就是问一个区间的点的\(lca\)的深度最大值. 一种做法是dfs的时候从下往上合并\(endpos\)集合,发现插入一个点的时候只需要把与前驱后继的贡献算进去 ...
- 【LOJ 6041】「雅礼集训 2017 Day7」事情的相似度
Description 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的 ...
- 【刷题】LOJ 6041 「雅礼集训 2017 Day7」事情的相似度
题目描述 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的有相同的事情发 ...
- [BJWC2018]Border 的四种求法(后缀自动机+链分治+线段树合并)
题目描述 给一个小写字母字符串 S ,q 次询问每次给出 l,r ,求 s[l..r] 的 Border . Border: 对于给定的串 s ,最大的 i 使得 s[1..i] = s[|s|-i+ ...
- 「雅礼集训 2017 Day7」事情的相似度
「雅礼集训 2017 Day7」事情的相似度 题目链接 我们先将字符串建后缀自动机.然后对于两个前缀\([1,i]\),\([1,j]\),他们的最长公共后缀长度就是他们在\(fail\)树上对应节点 ...
随机推荐
- [Spark][Python]RDD flatMap 操作例子
RDD flatMap 操作例子: flatMap,对原RDD的每个元素(行)执行函数操作,然后把每行都“拍扁” [training@localhost ~]$ hdfs dfs -put cats. ...
- 案例学python——案例二:连接数据库MySql
调侃的话:案例一跑完之后,欣赏把玩了一番.人就有点飘飘然,昨天除了做饭吃饭,就是玩三国杀,江郎才尽,今天周一,不飘了,敲点代码,看看Python操作数据库有啥不一样的. 前期准备: 1.数据库 电脑上 ...
- Effective C++学习笔记之explicit
关键字: explicit意思为“明确的”和“清楚的”,是C++的关键词,意在阻止隐式类型的转换: 使用原因: 有时候不合法的隐式转换,会让乖巧听话的程序变得不可控.所以适当地使用explicit关键 ...
- Jmeter(二十九)_dotnet搭建本地接口服务
这里使用的服务名为Bookshelf,在github上,自行下载.要运行此服务,需要.Net Core SDK 2.1或更高版本.如果尚未安装,从.Net Core官方网站下载并安装. 在本地克隆项目 ...
- linux下安装redis组件报错-gcc报错
报错如图: 1.解决办法 先安装gcc插件.删除redis解压后文件.重新解压
- LVM基础详细说明及动态扩容lvm逻辑卷的操作记录
LVM概念:---------------------------------------------------------------------------------------------- ...
- 【ML】ICML2015_Unsupervised Learning of Video Representations using LSTMs
Unsupervised Learning of Video Representations using LSTMs Note here: it's a learning notes on new L ...
- github作业
链接: https://github.com/liuyu13/liuyu13-1 总结:git可以学习的东西还有很多.git协议,分布式协作,git项目管理,git技巧,github的使用和实践, ...
- octave基本指令3
octave基本指令3 数据运算 >> a = [1 2; 3 4; 5 6]; >> b = [11 12; 13 14; 15 16]; >> c = [1 1 ...
- Apache Shiro Session Management
https://shiro.apache.org/session-management.html#session-management https://shiro.apache.org/session ...