拉格朗日乘子法&KKT条件
朗日乘子法(Lagrange Multiplier)和KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件。前提是:只有当目标函数为凸函数时,使用这两种方法才保证求得的是最优解。
1. 拉格朗日乘子法:
这个问题转换为
其中,称为拉格朗日乘子。
wikipedia上对拉格朗日乘子法的合理性解释:
现有一个二维的优化问题:
我们可以画图来辅助思考。
绿线标出的是约束的点的轨迹。蓝线是
的等高线。箭头表示斜率,和等高线的法线平行。从图上可以直观地看到在最优解处,f和g的法线方向刚好相反(或者说叫梯度共线),即
而满足(3)的点同时又是(4)的解。
所以(2)和(4)等价。
新方程F(x,y)在达到极值时与f(x,y)相等,因为F(x,y)达到极值时g(x,y)−c总等于零。
2.KKT条件
其中
上面的推导到此中断一下,我们看另外一个式子:
这里的和
都就向量,所以去掉了下标k。另外一些博友不明白上式中
是怎么推出来的,其实很简单,因为f(x)与变量
无关,所以这个等式就是成立的。
又
联合(7),(8)我们得到
增广朗日乘子法(Augumented Lagrange Multiplier)是对二次惩罚法(Quadratic Penalty Method)的一种改进,二次惩罚法要求二次惩罚项的系数趋近于无穷(对约束的偏离给予很高的惩罚)。
来源:https://www.zhihu.com/question/23424344/answer/39935081
拉格朗日乘子法&KKT条件的更多相关文章
- 拉格朗日乘子法 - KKT条件 - 对偶问题
接下来准备写支持向量机,然而支持向量机和其他算法相比牵涉较多的数学知识,其中首当其冲的就是标题中的拉格朗日乘子法.KKT条件和对偶问题,所以本篇先作个铺垫. 大部分机器学习算法最后都可归结为最优化问题 ...
- 关于拉格朗日乘子法和KKT条件
解密SVM系列(一):关于拉格朗日乘子法和KKT条件 标签: svm算法支持向量机 2015-08-17 18:53 1214人阅读 评论(0) 收藏 举报 分类: 模式识别&机器学习(42 ...
- 真正理解拉格朗日乘子法和 KKT 条件
这篇博文中直观上讲解了拉格朗日乘子法和 KKT 条件,对偶问题等内容. 首先从无约束的优化问题讲起,一般就是要使一个表达式取到最小值: \[min \quad f(x)\] 如 ...
- 拉格朗日乘子法和KKT条件
拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件 ...
- 机器学习笔记——拉格朗日乘子法和KKT条件
拉格朗日乘子法是一种寻找多元函数在一组约束下的极值方法,通过引入拉格朗日乘子,可将有m个变量和n个约束条件的最优化问题转化为具有m+n个变量的无约束优化问题.在介绍拉格朗日乘子法之前,先简要的介绍一些 ...
- 重温拉格朗日乘子法和KKT条件
在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...
- 第99:真正理解拉格朗日乘子法和 KKT 条件
- 【整理】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用 ...
- 深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
[整理] 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有 ...
随机推荐
- html5 javascript 事件练习2
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8&qu ...
- C# AsyncCallback异步回调用法示例
using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...
- 第六节 DOM操作应用
创建.插入和删除元素 创建DOM元素: createElement(标签名); //创建一个节点 appendChild(节点); //追加一个节点 例如:document.body.appendCh ...
- Technical poem
Apartment Good apartment be booked the second it bring to market. low product sold to many man, and ...
- Docker 部署 elk + filebeat
Docker 部署 elk + filebeat kibana 开源的分析与可视化平台logstash 日志收集工具 logstash-forwarder(原名lubmberjack)elastics ...
- 面试神体验之:get和post的区别
由于本文是用markdown在本地编辑的,粘贴到本地的时候出现了一些页面bug,所以只好贴进代码里面,一些链接失效,望见谅 Get和POST的区别 都9102年了,你们还在问get和post的区别?是 ...
- Springboot解决资源文件404,503等特殊报错,无法访问
Springboot解决资源文件404,503等特殊报错 原文链接:https://www.cnblogs.com/blog5277/p/9324609.html 原文作者:博客园--曲高终和寡 ** ...
- 谈谈如何给下拉框option添加点击事件?
我们在用到下拉列表框select时,需要对选中的<option>选项触发事件,其实<option>本身没有触发事件方法,我们只有在select里的onchange方法里触发. ...
- MDK C++编程说明
1.汇编启动文件的[WEAK]声明仅对C文件符号有效,所以我们编写外设中断服务方法时应该写在C文件中,或者在CPP文件中使用exetrn "C" { }修饰符. 2.C编译器不能直 ...
- Loadrunner加密算法脚本与token作为get请求url上的参数处理
1.当字符串被封装好加密时(下例将算法封装在md5中),使用Loadrunner编写脚本,需要进行如下操作: 1)将md5.h文件添加到Extra Files 下,如图(Loadrunne ...