在编程生活中,我们总会遇见树性结构,这几天刚好需要对树形结构操作,就记录下自己的操作方式以及过程。现在假设有一颗这样树,(是不是二叉树都没关系,原理都是一样的)

1、深度优先

英文缩写为DFS即Depth First Search.其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次。对于上面的例子来说深度优先遍历的结果就是:A,B,D,E,I,C,F,G,H.(假设先走子节点的的左侧)。

深度优先遍历各个节点,需要使用到栈(Stack)这种数据结构。stack的特点是是先进后出。整个遍历过程如下:

首先将A节点压入栈中,stack(A);

将A节点弹出,同时将A的子节点C,B压入栈中,此时B在栈的顶部,stack(B,C);

将B节点弹出,同时将B的子节点E,D压入栈中,此时D在栈的顶部,stack(D,E,C);

将D节点弹出,没有子节点压入,此时E在栈的顶部,stack(E,C);

将E节点弹出,同时将E的子节点I压入,stack(I,C);

...依次往下,最终遍历完成,Java代码大概如下:

public void depthFirst() {

Stack<Map<String, Object>> nodeStack = new Stack<Map<String, Object>>();

Map<String, Object> node = new HashMap<String, Object>();

nodeStack.add(node);

while (!nodeStack.isEmpty()) {

node = nodeStack.pop();

System.out.println(node);

//获得节点的子节点,对于二叉树就是获得节点的左子结点和右子节点

List<Map<String, Object>> children = getChildren(node);

if (children != null && !children.isEmpty()) {

for (Map child : children) {

nodeStack.push(child);

}

}

}

}

​//节点使用Map存放

2、广度优先

英文缩写为BFS即Breadth FirstSearch。其过程检验来说是对每一层节点依次访问,访问完一层进入下一层,而且每个节点只能访问一次。对于上面的例子来说,广度优先遍历的 结果是:A,B,C,D,E,F,G,H,I(假设每层节点从左到右访问)。

广度优先遍历各个节点,需要使用到队列(Queue)这种数据结构,queue的特点是先进先出,其实也可以使用双端队列,区别就是双端队列首尾都可以插入和弹出节点。整个遍历过程如下:

首先将A节点插入队列中,queue(A);

将A节点弹出,同时将A的子节点B,C插入队列中,此时B在队列首,C在队列尾部,queue(B,C);

将B节点弹出,同时将B的子节点D,E插入队列中,此时C在队列首,E在队列尾部,queue(C,D,E);

将C节点弹出,同时将C的子节点F,G,H插入队列中,此时D在队列首,H在队列尾部,queue(D,E,F,G,H);

将D节点弹出,D没有子节点,此时E在队列首,H在队列尾部,queue(E,F,G,H);

...依次往下,最终遍历完成,Java代码大概如下:

public void breadthFirst() {

Deque<Map<String, Object>> nodeDeque = new ArrayDeque<Map<String, Object>>();

Map<String, Object> node = new HashMap<String, Object>();

nodeDeque.add(node);

while (!nodeDeque.isEmpty()) {

node = nodeDeque.peekFirst();

System.out.println(node);

//获得节点的子节点,对于二叉树就是获得节点的左子结点和右子节点

List<Map<String, Object>> children = getChildren(node);

if (children != null && !children.isEmpty()) {

for (Map child : children) {

nodeDeque.add(child);

}

}

}

}

//这里使用的是双端队列,和使用queue是一样的

Java遍历树(深度优先+广度优先)的更多相关文章

  1. java遍历树(深度遍历和广度遍历

    java遍历树如现有以下一颗树:A     B          B1               B11          B2               B22     C          C ...

  2. java 遍历树节点 同时保留所有的从根到叶节点的路径

    直接在代码.稍后细说 数据结构定义: /** * */ package Servlet; import java.util.ArrayList; import java.util.List; /** ...

  3. 树的广度优先遍历和深度优先遍历(递归非递归、Java实现)

    在编程生活中,我们总会遇见树性结构,这几天刚好需要对树形结构操作,就记录下自己的操作方式以及过程.现在假设有一颗这样树,(是不是二叉树都没关系,原理都是一样的) 1.广度优先遍历 英文缩写为BFS即B ...

  4. 数据结构5_java---二叉树,树的建立,树的先序、中序、后序遍历(递归和非递归算法),层次遍历(广度优先遍历),深度优先遍历,树的深度(递归算法)

    1.二叉树的建立 首先,定义数组存储树的data,然后使用list集合将所有的二叉树结点都包含进去,最后给每个父亲结点赋予左右孩子. 需要注意的是:最后一个父亲结点需要单独处理 public stat ...

  5. Java中树和树的几种常规遍历方法

    其中包含有先序遍历.中序遍历.后序遍历以及广度优先遍历四种遍历树的方法: package com.ietree.basic.datastructure.tree.binarytree; import ...

  6. 【PHP数据结构】图的遍历:深度优先与广度优先

    在上一篇文章中,我们学习完了图的相关的存储结构,也就是 邻接矩阵 和 邻接表 .它们分别就代表了最典型的 顺序存储 和 链式存储 两种类型.既然数据结构有了,那么我们接下来当然就是学习对这些数据结构的 ...

  7. Java实现 LeetCode 606 根据二叉树创建字符串(遍历树)

    606. 根据二叉树创建字符串 你需要采用前序遍历的方式,将一个二叉树转换成一个由括号和整数组成的字符串. 空节点则用一对空括号 "()" 表示.而且你需要省略所有不影响字符串与原 ...

  8. lintcode: 中序遍历和后序遍历树构造二叉树

    题目 中序遍历和后序遍历树构造二叉树 根据中序遍历和后序遍历树构造二叉树 样例 给出树的中序遍历: [1,2,3] 和后序遍历: [1,3,2] 返回如下的树: 2 /  \ 1    3 注意 你可 ...

  9. 【leetcode-200 深度优先+广度优先】 岛屿数量

    给定一个由 '1'(陆地)和 '0'(水)组成的的二维网格,计算岛屿的数量.一个岛被水包围,并且它是通过水平方向或垂直方向上相邻的陆地连接而成的.你可以假设网格的四个边均被水包围. 示例 1: 输入: ...

随机推荐

  1. Shiro 整合SpringMVC 并实现权限管理,登录和注销

    Shiro 整合SpringMVC 并且实现权限管理,登录和注销 Apache Shiro是Java的一个安全框架.目前,使用Apache Shiro的人越来越多,因为它相当简单,对比Spring S ...

  2. git教程: 创建版本库

    转载:创建版本库 什么是版本库呢?版本库又名仓库,英文名repository,你可以简单理解成一个目录,这个目录里面的所有文件都可以被Git管理起来,每个文件的修改.删除,Git都能跟踪,以便任何时刻 ...

  3. idea xml版本修改问题

    STEP 1.选中模块 STEP 2.file---->Project Structure---->Facets---->把相应模块的给删除"-"----> ...

  4. 移动端键盘遮挡input问题

    在开发移动端项目的时候测试提出优化问题,即: input 获取焦点弹出系统虚拟键盘时, input 被键盘遮挡问题(PS:此问题只在安卓手机上有,ios系统是有自动处理的). 解决办法为: 当 inp ...

  5. Arch Linux 独特的包管理器相关名词解释及用法对照

    https://wiki.archlinux.org/index.php/PacmanPacman包管理器是Arch Linux的主要特色之一.它结合了简单的二进制包格式和易于使用的构建系统.pacm ...

  6. C语言中->是什么意思啊?比如说 p=p->next 到底表达了什么意思,请说清楚点,还有->这个符号是一个整体吗,什么意思??

    ->是一个整体,它是用于指向结构体.C++中的class等含有子数据的指针用来取子数据.换种说法,如果我们在C语言中定义了一个结构体,然后申明一个指针指向这个结构体,那么我们要用指针取出结构体中 ...

  7. oracle错误汇总1

    这是遇见的第一个整个库正常,但某张表查询报错的情况 某张表数据可以查,但一排序查就报错 select * from acct_daily_bak; select * from acct_daily_b ...

  8. VS2010+WPF+LINQ for MySQL

    学习wpf,连接数据库和linq for mysql 1.参考以前博文,恢复在 Vs2010+linQ for Mysql的环境. 2.建立 wpf工程,参照1,生成 datacontext.cs , ...

  9. SpringBoot RestFul风格API接口开发

    本文介绍在使用springBoot如何进行Restful Api接口的开发及相关注解已经参数传递如何处理. 一.概念: REST全称是Representational State Transfer,中 ...

  10. C语言数组指针

    C语言中的数组指针与指针数组: ·数组指针一.区分 首先我们需要了解什么是数组指针以及什么是指针数组,如下: int *p[5];int (*p)[5];数组指针的意思即为通过指针引用数组,p先和*结 ...