Java遍历树(深度优先+广度优先)
在编程生活中,我们总会遇见树性结构,这几天刚好需要对树形结构操作,就记录下自己的操作方式以及过程。现在假设有一颗这样树,(是不是二叉树都没关系,原理都是一样的)

1、深度优先
英文缩写为DFS即Depth First Search.其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次。对于上面的例子来说深度优先遍历的结果就是:A,B,D,E,I,C,F,G,H.(假设先走子节点的的左侧)。
深度优先遍历各个节点,需要使用到栈(Stack)这种数据结构。stack的特点是是先进后出。整个遍历过程如下:
首先将A节点压入栈中,stack(A);
将A节点弹出,同时将A的子节点C,B压入栈中,此时B在栈的顶部,stack(B,C);
将B节点弹出,同时将B的子节点E,D压入栈中,此时D在栈的顶部,stack(D,E,C);
将D节点弹出,没有子节点压入,此时E在栈的顶部,stack(E,C);
将E节点弹出,同时将E的子节点I压入,stack(I,C);
...依次往下,最终遍历完成,Java代码大概如下:
|
public void depthFirst() { Stack<Map<String, Object>> nodeStack = new Stack<Map<String, Object>>(); Map<String, Object> node = new HashMap<String, Object>(); nodeStack.add(node); while (!nodeStack.isEmpty()) { node = nodeStack.pop(); System.out.println(node); //获得节点的子节点,对于二叉树就是获得节点的左子结点和右子节点 List<Map<String, Object>> children = getChildren(node); if (children != null && !children.isEmpty()) { for (Map child : children) { nodeStack.push(child); } } } } //节点使用Map存放 |
2、广度优先
英文缩写为BFS即Breadth FirstSearch。其过程检验来说是对每一层节点依次访问,访问完一层进入下一层,而且每个节点只能访问一次。对于上面的例子来说,广度优先遍历的 结果是:A,B,C,D,E,F,G,H,I(假设每层节点从左到右访问)。
广度优先遍历各个节点,需要使用到队列(Queue)这种数据结构,queue的特点是先进先出,其实也可以使用双端队列,区别就是双端队列首尾都可以插入和弹出节点。整个遍历过程如下:
首先将A节点插入队列中,queue(A);
将A节点弹出,同时将A的子节点B,C插入队列中,此时B在队列首,C在队列尾部,queue(B,C);
将B节点弹出,同时将B的子节点D,E插入队列中,此时C在队列首,E在队列尾部,queue(C,D,E);
将C节点弹出,同时将C的子节点F,G,H插入队列中,此时D在队列首,H在队列尾部,queue(D,E,F,G,H);
将D节点弹出,D没有子节点,此时E在队列首,H在队列尾部,queue(E,F,G,H);
...依次往下,最终遍历完成,Java代码大概如下:
|
public void breadthFirst() { Deque<Map<String, Object>> nodeDeque = new ArrayDeque<Map<String, Object>>(); Map<String, Object> node = new HashMap<String, Object>(); nodeDeque.add(node); while (!nodeDeque.isEmpty()) { node = nodeDeque.peekFirst(); System.out.println(node); //获得节点的子节点,对于二叉树就是获得节点的左子结点和右子节点 List<Map<String, Object>> children = getChildren(node); if (children != null && !children.isEmpty()) { for (Map child : children) { nodeDeque.add(child); } } } } //这里使用的是双端队列,和使用queue是一样的 |
Java遍历树(深度优先+广度优先)的更多相关文章
- java遍历树(深度遍历和广度遍历
java遍历树如现有以下一颗树:A B B1 B11 B2 B22 C C ...
- java 遍历树节点 同时保留所有的从根到叶节点的路径
直接在代码.稍后细说 数据结构定义: /** * */ package Servlet; import java.util.ArrayList; import java.util.List; /** ...
- 树的广度优先遍历和深度优先遍历(递归非递归、Java实现)
在编程生活中,我们总会遇见树性结构,这几天刚好需要对树形结构操作,就记录下自己的操作方式以及过程.现在假设有一颗这样树,(是不是二叉树都没关系,原理都是一样的) 1.广度优先遍历 英文缩写为BFS即B ...
- 数据结构5_java---二叉树,树的建立,树的先序、中序、后序遍历(递归和非递归算法),层次遍历(广度优先遍历),深度优先遍历,树的深度(递归算法)
1.二叉树的建立 首先,定义数组存储树的data,然后使用list集合将所有的二叉树结点都包含进去,最后给每个父亲结点赋予左右孩子. 需要注意的是:最后一个父亲结点需要单独处理 public stat ...
- Java中树和树的几种常规遍历方法
其中包含有先序遍历.中序遍历.后序遍历以及广度优先遍历四种遍历树的方法: package com.ietree.basic.datastructure.tree.binarytree; import ...
- 【PHP数据结构】图的遍历:深度优先与广度优先
在上一篇文章中,我们学习完了图的相关的存储结构,也就是 邻接矩阵 和 邻接表 .它们分别就代表了最典型的 顺序存储 和 链式存储 两种类型.既然数据结构有了,那么我们接下来当然就是学习对这些数据结构的 ...
- Java实现 LeetCode 606 根据二叉树创建字符串(遍历树)
606. 根据二叉树创建字符串 你需要采用前序遍历的方式,将一个二叉树转换成一个由括号和整数组成的字符串. 空节点则用一对空括号 "()" 表示.而且你需要省略所有不影响字符串与原 ...
- lintcode: 中序遍历和后序遍历树构造二叉树
题目 中序遍历和后序遍历树构造二叉树 根据中序遍历和后序遍历树构造二叉树 样例 给出树的中序遍历: [1,2,3] 和后序遍历: [1,3,2] 返回如下的树: 2 / \ 1 3 注意 你可 ...
- 【leetcode-200 深度优先+广度优先】 岛屿数量
给定一个由 '1'(陆地)和 '0'(水)组成的的二维网格,计算岛屿的数量.一个岛被水包围,并且它是通过水平方向或垂直方向上相邻的陆地连接而成的.你可以假设网格的四个边均被水包围. 示例 1: 输入: ...
随机推荐
- 自动化测试-13.selenium执行JS处理滚动条
前言 selenium并不是万能的,有时候页面上操作无法实现的,这时候就需要借助JS来完成了. 常见场景: 当页面上的元素超过一屏后,想操作屏幕下方的元素,是不能直接定位到,会报元素不可见的. 这时候 ...
- 使用FileZilla连接时超时,无法连接到服务器
更改一下加密方式,就是不用TLS,用相对不安全方式的(可选项) 腾讯云就是这样的,
- [JAVA]JAVA遍历Map的几种方式
//遍历key for (String key : dic.keySet() ) { System.out.println(key + dic.get(key)); } //遍历values for ...
- ASP.NET Core 2.0系列学习笔记-NLog日志配置文件
一.新建ASP.NET Core 2.0 MVC项目,使用NuGet在浏览中搜索:NLog.Web.AspNetCore,如下图所示: 二.在项目的根目录下新建一个xml类型的nlog.config文 ...
- FPGA中iic总线上,应答ACK解析
首先要明白一点,有效ACK是指第9位为低电平,第十位,十一位就管不着了,(我写的代码发现第九位为低电平,之后复位为高电平,开始没注意后来搞的很是头痛) 主机发ack和主机检测ack,主机发ack是在从 ...
- spi、iic、can高速传输速度与选择
uart: 无限制,常用9600.115200bps等保证双方通信速度相同. iic: 通讯速率400Kbps can: 一般为1Mbps SPI: 通信速率 fosc/4其传输速度可达几Mb/s 缺 ...
- 简述Ajax原理及实现步骤
简述Ajax原理及实现步骤 1.Ajax简介 概念 Ajax 即“Asynchronous Javascript And XML”(异步 JavaScript 和 XML). 现在允许浏览器与务器通信 ...
- phpcms调用语句
title 标题:url 链接地址:thumb缩略图 :先调用moreinfo="1" content 内容: {php list($copyfrom) = explode('| ...
- note 4 三大结构
程序流程图 顺序结构 选择结构 if if-else if 语句-嵌套结构(Nested) 多分支结构(Chained) if score >= 90: print 'ARM' elif sco ...
- websocket简单理解
实现及原理 Websocket是一种在单个TCP连接上进行全双工通讯的协议. WebSocket 首先发起一个 HTTP 请求,在请求头加上 `Upgrade` 字段,该字段用于改变 HTTP 协议版 ...