Luogu P3388 【模板】割点(割顶)
一道求割点的板子题。还是采用经典的Tarjan算法。
首先大致和Tarjan求强连通分量相似,都是用\(dfn_x\)表示访问到\(x\)的时间(时间戳),\(low_x\)表示通过\(x\)回边能走到的时间戳最小的点的时间戳。
然后我们考虑一下对于一个点如何判断它是否为割点:
- 若这个点是我们人为选择的起始节点(根节点),那么当它的子树个数大于等于两个时肯定就是割点(因为这些子树就无法互相到达)
- 若这个点不是根节点,那么当它的任意一个出点\(y\)的\(low_y>=dfn_x\)时,证明它的儿子无法通过回边回到它前面的点,因此这个点就是割点。
然后注意一下一个经典的细节,在通过回边更新时要写成:
low[now]=min(low[now],dfn[e[i].to]);
而不是
low[now]=min(low[now],low[e[i].to]);
然后引用一下Luogu某大佬taoran的话:
由于此处是一张无向图,我们有双向建了边,导致节点可以回溯到它的父节点;
而如果从它的父节点或其父节点的另一棵子树上有向上很多的返祖边,
这时把子节点的low值赋为父节点的low,就可能导致其low==其父节点low<其父节点dfn,
从而使本该是割点的点被忽视了,答案就少了
然后就当板子题切掉吧。CODE
#include<cstdio>
#include<cctype>
#include<cstring>
using namespace std;
const int N=100005;
struct edge
{
int to,next;
}e[N<<1];
int head[N],father[N],low[N],dfn[N],cnt,tot,ans,n,m,x,y;
bool cut[N];
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
}
inline void write(int x)
{
if (x>9) write(x/10);
putchar(x%10+'0');
}
inline void add(int x,int y)
{
e[++cnt].to=y; e[cnt].next=head[x]; head[x]=cnt;
}
inline int min(int a,int b)
{
return a<b?a:b;
}
inline void Tarjan(int now)
{
dfn[now]=low[now]=++tot; int res=0;
for (register int i=head[now];i!=-1;i=e[i].next)
if (!dfn[e[i].to])
{
father[e[i].to]=now; ++res;
Tarjan(e[i].to); low[now]=min(low[now],low[e[i].to]);
if (father[now]&&low[e[i].to]>=dfn[now]) !cut[now]&&(cut[now]=1,++ans);
} else if (e[i].to!=father[now]) low[now]=min(low[now],dfn[e[i].to]);
if (!father[now]&&res>=2) !cut[now]&&(cut[now]=1,++ans);
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i; read(n); read(m);
memset(e,-1,sizeof(e)); memset(head,-1,sizeof(head));
for (i=1;i<=m;++i)
read(x),read(y),add(x,y),add(y,x);
for (i=1;i<=n;++i)
if (!dfn[i]) Tarjan(i);
for (write(ans),putchar('\n'),i=1;i<=n;++i)
if (cut[i]) write(i),putchar(' ');
return 0;
}
Luogu P3388 【模板】割点(割顶)的更多相关文章
- 【Luogu P3388】割点模板
Luogu P3388 在一个无向图中,如果有一个顶点集合,删除这个顶点集合以及这个集合中所有顶点相关联的边以后,图的连通分量增多,就称这个点集为割点集合. 如果某个割点集合只含有一个顶点X(也即{X ...
- Tarjan求割点(割顶) 割边(桥)
割点的定义: 感性理解,所谓割点就是在无向连通图中去掉这个点和所有和这个点有关的边之后,原先连通的块就会相互分离变成至少两个分离的连通块的点. 举个例子: 图中的4号点就是割点,因为去掉4号点和有关边 ...
- $割点割顶tarjan$
原题 #include <bits/stdc++.h> using namespace std; typedef long long LL; inline LL read () { LL ...
- 洛谷 P3388 割点(割顶) 题解
题面: 割点性质: 节点 u 如果是割点,当且仅当存在 u 的一个子树,子树中没有连向 u 的祖先的边(返祖边). 换句话说,如果对于一个点u,它的子节点是v,如果low[v] ...
- Tarjan求割点 || Luogu P3388 【模板】割点(割顶)
题面:P3388 [模板]割点(割顶) 题解:无 代码: #include<cstdio> #include<iostream> #include<cstring> ...
- P3388 【模板】割点(割顶)
P3388 [模板]割点(割顶) 题目背景 割点 题目描述 给出一个n个点,m条边的无向图,求图的割点. 输入输出格式 输入格式: 第一行输入n,m 下面m行每行输入x,y表示x到y有一条边 输出格式 ...
- P3388 【模板】割点(割顶) 题解 (Tarjan)
题目链接 P3388 [模板]割点(割顶) 解题思路 最近学的东西太杂了,多写点博客免得自己糊里糊涂的过去了. 这个题求割点,感觉这篇文章写得挺好. 割点是啥?如果去掉这个点之后连通图变成多个不连通图 ...
- 洛谷 P3388 【模板】割点(割顶)(Tarjan)
题目链接 https://www.luogu.org/problemnew/show/P3388 模板题 解题思路 什么是割点? 怎样求割点? dfn :即时间戳,一张图的dfs序(dfs遍历时出现的 ...
- 图论算法-Tarjan模板 【缩点;割顶;双连通分量】
图论算法-Tarjan模板 [缩点:割顶:双连通分量] 为小伙伴们总结的Tarjan三大算法 Tarjan缩点(求强连通分量) int n; int low[100010],dfn[100010]; ...
- poj 1144 Network 图的割顶判断模板
Network Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8797 Accepted: 4116 Descripti ...
随机推荐
- 2018最新大厂Android面试真题
前言 又到了金三银四的面试季,自己也不得不参与到这场战役中来,其实是从去年底就开始看,android的好机会确实不太多,但也还好,3年+的android开发经历还是有一些面试机会的,不过确实不像几年前 ...
- gitlab-ci的注意点
在使用gitlab搭配gitlab-runner进行ci配置时,发现两个问题,略记如下备忘: 1. 若发现ci job控制台显示无法下载该项目,但当前提交代码人和ci用户都确实具备该项目的访问权限时, ...
- 5.3Python函数(三)
目录 目录 前言 (一)装饰器 ==1.简单的装饰器== ==2.修饰带参数函数的装饰器== ==3.修饰带返回值函数的装饰器== ==4.自身带参数的装饰器== (二)迭代器 (三)生成器 ==1. ...
- Lua与C交互之基础操作(1)
@(语言) Lua是一个嵌入式的语言,可以Lua可以作为程序库用来扩展应用的功能,也可以注册有其他语言实现的函数,这些函数可能由C语言(或其他语言)实现,可以增加一些不容易由Lua实现的功能.这就是L ...
- input 属性radio中设置checked 不生效
同一个页面中有许多地方都用到了单选按钮并设置了默认选中 , 结果在运行的时候发现单选按钮没有被默认选中 由于是复制然后修改个别属性 ,然后直接使用的 , 所以name值忘记修改了 , 单选框是根据na ...
- [bug]android monkey命令在Android N和Android O上的一点差异发现
最近再调试这个统计FPS的代码,发现代码在android N上可以正常运行,但在android O上却运行不了,拼了命的报错,给出的提示就是 ZeroDivisionError: division b ...
- python windows环境下文档备份
#python 2.7 #Filename:backup.py import os import time source = [r'C:\Users\zeng.shufang\Desktop\mess ...
- 深入浅出RxJava(二:操作符)
看完这篇blog,我相信你肯定想立即在你的项目中使用RxJava了,这篇blog将介绍许多RxJava中的操作符,RxJava的强大性就来自于它所定义的操作符. 首先先看一个例子: 准备工作 假设我有 ...
- Docker部署HDFS
docker部署hadoop只是实验目的,每个服务都是通过手动部署,比如namenode, datanode, journalnode等.如果为了灵活的管理集群,而不使用官方封装好的自动化部署脚本,本 ...
- Tensorflow张量
张量常规解释 张量(tensor)理论是数学的一个分支学科,在力学中有重要应用.张量这一术语起源于力学,它最初是用来表示弹性介质中各点应力状态的,后来张量理论发展成为力学和物理学的一个有力的数学工具. ...