题目求一棵树的最小支配数。

支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻。

听说即使是二分图,最小支配集的求解也是还没多项式算法的。而树上求最小支配集树型DP就OK了。

树上的每个结点作为其子树的根可以有三个状态:

  1. 不属于支配集且还没被支配
  2. 不属于支配集但被其孩子支配
  3. 属于支配集

那么就是用dp[u][1\2\3]来作为动归的状态,表示结点u为根子树的且u状态为1、2、3的最小支配数。

123转移该怎么转移就怎么转移。。最后的结果就是min(dp[root][2],dp[root][3])。

要注意的是对于有些结点前2个状态可能是不存在的,比如叶子结点不存在第2个状态、存在孩子是叶子结点的结点不存在第1个状态,这些不存在的状态要在转移的时候处理。

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define INF 123456
#define MAXN 111111
struct Edge{
int u,v,next;
}edge[MAXN<<];
int NE,head[MAXN];
void addEdge(int u,int v){
edge[NE].u=u; edge[NE].v=v; edge[NE].next=head[u];
head[u]=NE++;
}
int d[MAXN][];
int dp(int u,int k,int fa){
if(d[u][k]!=-) return d[u][k];
int res=,diff=INF; bool flag=,isLeaf=;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(v==fa) continue;
isLeaf=;
if(k==){
if(dp(v,,u)==INF) return d[u][k]=INF;
res+=dp(v,,u);
}else if(k==){
if(dp(v,,u)<=dp(v,,u)){
res+=dp(v,,u);
flag=;
}else{
if(dp(v,,u)==INF) return d[u][k]=INF;
res+=dp(v,,u);
diff=min(diff,dp(v,,u)-dp(v,,u));
}
}else{
res+=min(min(dp(v,,u),dp(v,,u)),dp(v,,u));
}
}
if(k== && isLeaf) return d[u][k]=INF;
if(k== && !flag) res+=diff;
return d[u][k]=res+(k==);
}
int main(){
int n,a,b;
scanf("%d",&n);
NE=;
memset(head,-,sizeof(head));
for(int i=; i<n; ++i){
scanf("%d%d",&a,&b);
addEdge(a,b); addEdge(b,a);
}
memset(d,-,sizeof(head));
printf("%d",min(dp(,,),dp(,,)));
return ;
}

POJ3659 Cell Phone Network(树上最小支配集:树型DP)的更多相关文章

  1. poj-3659 Cell Phone Network(最小支配集+贪心)

    http://poj.org/problem?id=3659 Description Farmer John has decided to give each of his cows a cell p ...

  2. POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心)-动态规划做法

    POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心) Description Farmer John ...

  3. POJ 3659 Cell Phone Network(树的最小支配集)(贪心)

    Cell Phone Network Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6781   Accepted: 242 ...

  4. POJ 3398 Perfect Service(树型动态规划,最小支配集)

    POJ 3398 Perfect Service(树型动态规划,最小支配集) Description A network is composed of N computers connected by ...

  5. 树的问题小结(最小生成树、次小生成树、最小树形图、LCA、最小支配集、最小点覆盖、最大独立集)

    树的定义:连通无回路的无向图是一棵树. 有关树的问题: 1.最小生成树. 2.次小生成树. 3.有向图的最小树形图. 4.LCA(树上两点的最近公共祖先). 5.树的最小支配集.最小点覆盖.最大独立集 ...

  6. POJ 3398 Perfect Service --最小支配集

    题目链接:http://poj.org/problem?id=3398 这题可以用两种上述讲的两种算法解:http://www.cnblogs.com/whatbeg/p/3776612.html 第 ...

  7. 求解任意图的最小支配集(Minimun Dominating Set)

    给定一个无向图G =(V,E),其中V表示图中顶点集合,E表示边的集合.G的最小控制顶点集合为V的一个子集S∈V:假设集合R表示V排除集合S后剩余顶点集合,即R∩S=∅,R∪S=V:则最小控制顶点集合 ...

  8. 树形DP求树的最小支配集,最小点覆盖,最大独立集

    一:最小支配集 考虑最小支配集,每个点有两种状态,即属于支配集合或者不属于支配集合,其中不属于支配集合时此点还需要被覆盖,被覆盖也有两种状态,即被子节点覆盖或者被父节点覆盖.总结起来就是三种状态,现对 ...

  9. 树形DP 树的最小支配集,最小点覆盖与最大独立集

    最小支配集: 从V中选取尽量少的点组成一个集合,让V中剩余的点都与取出来的点有边相连. (点) 最小点覆盖: 从V中选取尽量少的点组成一个集合V1,让所有边(u,v)中要么u属于V1,要么v属于V1 ...

随机推荐

  1. Vector3.Lerp 插值

    Vector3.Lerp 插值 static function Lerp (from : Vector3, to : Vector3, t : float) : Vector3 Description ...

  2. UIScrollview使用

    改变内容偏移 - (void)setContentOffset:(CGPoint)contentOffset animated:(BOOL)animated;  // animate at const ...

  3. 在iOS7中修改状态栏字体的颜色

    http://www.2cto.com/kf/201408/324442.html 默认状态栏的字体为黑色:UIStatusBarStyleDefault 状态栏的字体为白色:UIStatusBarS ...

  4. Linux--YUM 安装 nginx php mysql

    Linux--YUM 安装 nginx php mysql (2011-11-13 11:27:14) 转载▼ 标签: 杂谈 分类: Linux 1.先新建一个 repo # vi /etc/yum. ...

  5. extern关键字总结

    [本文链接] http://www.cnblogs.com/hellogiser/p/extern.html [extern 变量/函数] extern是C/C++语言中表明函数和全局变量作用范围(可 ...

  6. sqlcmd

    使用sqlcmd可以在批处理脚本中执行SQL.虽然这个命令的参数很多,但幸运的是,我们不需要全部理解,在这里简要介绍以下几个: { -U login_id [ -P password ] } | –E ...

  7. POJ 2429 GCD & LCM Inverse (Pollard rho整数分解+dfs枚举)

    题意:给出a和b的gcd和lcm,让你求a和b.按升序输出a和b.若有多组满足条件的a和b,那么输出a+b最小的.思路:lcm=a*b/gcd   lcm/gcd=a/gcd*b/gcd 可知a/gc ...

  8. DP:Cow Bowling(POJ 3176)

    北大教你怎么打保龄球 题目很简单的,我就不翻译了,简单来说就是储存每一行的总数,类似于状态压缩 #include <stdio.h> #include <stdlib.h> # ...

  9. discuz插件开发新手入门 超详细

    作为一个新手,目前也是刚刚玩转discuz的插件功能,好东西不敢独享,就拿出来大家一起分享入门的过程.现在网上很多关于discuz的插件教程都是很简单的教程,原因可能是这个东西是商业化的东西,本着分享 ...

  10. 【读书笔记】读《JavaScript高级程序设计-第2版》 - 函数部分

    1. 定义 函数实际上是对象,每个函数都是Function类型的实例,而且都与其他引用类型一样具有属性和方法.由于函数是对象,因此函数名实际上也是一个指向函数对象的指针,不会与某个函数绑定. 对于函数 ...