【BZOJ2127】happiness 最小割
题目大意:有一个$n\times m$的矩阵,矩阵的每个位置上有一个同学,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友。这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文科或者理科,那么他们又将收获一些喜悦值。求一个方案,使得全班的喜悦值总和最大。
数据范围:$n,m≤100$,权值$≤5000$。
此题直接最小割,对于一对相邻的同学$(A,B)$,设$L_A$表示$A$同学选理的喜悦值,$W_A$表示$A$同学选文的喜悦值(前面说的两种情况$B$同理),设$L$为两个人都选理的额外收获喜悦值,$W$为两个人都选文的额外收获喜悦值,则有:
$S->A$ ,权值为:$L_A+\frac{1}{2}L$
$A->T$ ,权值为:$W_A+\frac{1}{2}W$
$S->A$ ,权值为:$L_A+\frac{1}{2}L$
$A->T$ ,权值为:$W_A+\frac{1}{2}W$
$A<->B$,权值为:$\frac{1}{2}(L+W)$
当点数变多的时候,情况会有所不同,基于这个思路简单变形下就好了
建完图后跑最大流就行了
B站上的数据比较水,我们OJ上的数据加强了必须加上一个特殊的剪枝才能过(新姿势get)
#include<bits/stdc++.h>
#define M 300005
#define N 105
#define INF 1145141919
#define F(_x,_y) for(int i=1;i<=(_x);i++) for(int j=1;j<=(_y);j++)
using namespace std; struct edge{int u,v,next;}e[M]={}; int head[M]={},use=;
void add(int x,int y,int z){e[use].u=y;e[use].v=z;e[use].next=head[x];head[x]=use++;}
void Add(int x,int y,int z){add(x,y,z); add(y,x,);}
int n,m,a[N][N]={},b[N][N]={},sum=,id[N][N]={},d[N][N]={},r[N][N]={},cnt=;
int S,T,vis[M]={}; queue<int> q; bool bfs(){
q.push(S); memset(vis,,(cnt+)<<); vis[S]=;
while(!q.empty()){
int u=q.front(); q.pop();
for(int i=head[u];~i;i=e[i].next)
if(e[i].v&&vis[e[i].u]==){
vis[e[i].u]=vis[u]+;
q.push(e[i].u);
}
}
return vis[T];
}
int dfs(int x,int flow){
if(x==T) return flow; int sum=;
for(int i=head[x];~i;i=e[i].next)
if(e[i].v&&vis[e[i].u]==vis[x]+){
int k=dfs(e[i].u,min(flow,e[i].v));
e[i].v-=k; e[i^].v+=k;
sum+=k; flow-=k;
if(flow==) return sum;
}
if(sum==) vis[x]=-;
return sum;
}
int dinic(){
int res=;
while(bfs())
res+=dfs(S,INF);
return res;
} int main(){
//freopen("in.txt","r",stdin);
memset(head,-,sizeof(head));
S=; T=; cnt=;
scanf("%d%d",&n,&m);
F(n,m) id[i][j]=++cnt;
F(n,m) scanf("%d",&a[i][j]),sum+=a[i][j],a[i][j]<<=;
F(n,m) scanf("%d",&b[i][j]),sum+=b[i][j],b[i][j]<<=;
F(n-,m){
int x; scanf("%d",&x);
a[i][j]+=x; a[i+][j]+=x; sum+=x; d[i][j]+=x;
}
F(n-,m){
int x; scanf("%d",&x);
b[i][j]+=x; b[i+][j]+=x; sum+=x; d[i][j]+=x;
}
F(n,m-){
int x; scanf("%d",&x);
a[i][j]+=x; a[i][j+]+=x; sum+=x; r[i][j]+=x;
}
F(n,m-){
int x; scanf("%d",&x);
b[i][j]+=x; b[i][j+]+=x; sum+=x; r[i][j]+=x;
}
F(n,m){
Add(S,id[i][j],a[i][j]);
Add(id[i][j],T,b[i][j]);
}
F(n,m-){
add(id[i][j],id[i][j+],r[i][j]);
add(id[i][j+],id[i][j],r[i][j]);
}
F(n-,m){
add(id[i][j],id[i+][j],d[i][j]);
add(id[i+][j],id[i][j],d[i][j]);
}
int hh=dinic();
hh>>=;
cout<<sum-hh<<endl;
}
【BZOJ2127】happiness 最小割的更多相关文章
- [bzoj2127]happiness——最小割
这个题太恶心了...并不想继续做了... 本代码在bzoj上TLE! 大致说一下思路: 建立ST,首先由S连边(S,u,a)a代表学文的分数,连向T(u,T,b)b表示学理的分数,这样构造出了两个人独 ...
- [置顶] [BZOJ]2127: happiness 最小割
happiness: Description 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了,每个同学对于选择文科与理科有着自己 ...
- [BZOJ2127]happiness-[网络流-最小割]
Description 传送门 Solution 按照最小割的思路考虑. 根据题意,当两个人都选文(理),需要砍掉两个人都选理(文)的加成:如果两个人选的不一样,就要都砍掉. 这是一个网络流建模的套路 ...
- [国家集训队]happiness 最小割 BZOJ 2127
题目描述 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文 ...
- BZOJ 2127 / Luogu P1646 [国家集训队]happiness (最小割)
题面 BZOJ传送门 Luogu传送门 分析 这道题又出现了二元关系,于是我们只需要解方程确定怎么连边就行了 假设跟SSS分在一块是选文科,跟TTT分在一块是选理科,先加上所有的收益,再来考虑如何让需 ...
- luogu P1646 [国家集训队]happiness (最小割)
高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文科或者理科 ...
- BZOJ 2127: happiness [最小割]
2127: happiness Time Limit: 51 Sec Memory Limit: 259 MBSubmit: 1815 Solved: 878[Submit][Status][Di ...
- BZOJ 2127: happiness(最小割解决集合划分)
Time Limit: 51 Sec Memory Limit: 259 MBSubmit: 2350 Solved: 1138[Submit][Status][Discuss] Descript ...
- 【BZOJ2127】happiness(最小割)
[BZOJ2127]happiness(最小割) 题面 Description 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了, ...
随机推荐
- EnrichPipeline文档
https://sourceforge.net/projects/enrichmentpipeline/
- KbmMW 服务器架构简介
kbmmw 由于文档比较少,很多同学开始用时很难理解.一直准备写一个关于kbmmw 架构的东西. 这几天与红鱼儿(blog)研究服务器线程时,整理了一下,大概画了一下kbmmw (版本4.5)服务器的 ...
- 2018.10.18 NOIP训练 [SCOI2018]Pipi 酱的日常(线段树)
传送门 线段树好题啊. 题目要求的是sum−a−b−c+maxsum-a-b-c+maxsum−a−b−c+max{∣a+v∣+∣b+v∣+∣c+v∣|a+v|+|b+v|+|c+v|∣a+v∣+∣b ...
- 2018.09.28 hdu5434 Peace small elephant(状压dp+矩阵快速幂)
传送门 看到n的范围的时候吓了一跳,然后发现可以矩阵快速幂优化. 我们用类似于状压dp的方法构造(1(1(1<<m)∗(1m)*(1m)∗(1<<m)m)m)大小的矩阵. 然后 ...
- Django-组件
https://www.cnblogs.com/yuanchenqi/articles/8034442.html
- 打开子页面及刷新父页面 window.open window.opener.reload()
//打开子页面 var url=children_url;window.open(url) //刷新parent页面 var url=parent_urlfunction refresh(url){ ...
- JedisPoolConfig解说
版本一 今天发现Jedis 默认的连接方式 jedis=new Jedis(“localhost”,6379),老是发生connection timeout. 后来发现jedis类包还有一种可以设置最 ...
- jvm不打印异常栈
生产环境抛异常,但却没有将堆栈信息输出到日志,确认打印日志方法正确logger.error("somthing error", ex); JVM启动参数加上-XX:-OmitSta ...
- NHibernate的搭建
1.新建项目 Business:业务逻辑类 Data:数据层,存放数据库的操作及Nhibernate辅助类 Domain:数据实体和数据库映射文件 2.使用NuGet下载Nhibernate 数据库配 ...
- C++中的inline声明
C++中的inline声明 1. inline函数(摘自C++ Primer的第三版) 在函数声明或定义中函数返回类型前加上关键字inline即把函数指定为内联函数. inline int min(i ...